图像分析之图像形态学处理
1.腐蚀操作 |
2.膨胀操作 |
3.开运算与闭运算 |
4.梯度运算(绘制图像的边框) |
5.礼帽与黑帽 |
1.腐蚀操作
import cv2 #opencv读取的格式是BGR import numpy as np import matplotlib.pyplot as plt#Matplotlib是RGB img = cv2.imread('dige.png') cv2.imshow('img', img) # 腐蚀操作
#kernel 腐蚀范围, iterations 迭代次数
kernel = np.ones((3, 3), np.uint8) erosion = cv2.erode(img, kernel, iterations = 1) cv2.imshow('erosion', erosion) cv2.waitKey(0) cv2.destroyAllWindows()
2.膨胀操作
img = cv2.imread('dige.png') cv2.imshow('img', img) # 膨胀操作
#kernel 腐蚀范围, iterations 迭代次数
kernel = np.ones((3,3),np.uint8) dige_dilate = cv2.dilate(img,kernel,iterations = 1) cv2.imshow('dilate', dige_dilate) cv2.waitKey(0) cv2.destroyAllWindows()
3.开运算与闭运算
# 开:先腐蚀,再膨胀 img = cv2.imread('dige.png') kernel = np.ones((5,5),np.uint8) opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel) cv2.imshow('opening', opening) cv2.waitKey(0) cv2.destroyAllWindows()
# 闭:先膨胀,再腐蚀 img = cv2.imread('dige.png') kernel = np.ones((5,5),np.uint8) closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel) cv2.imshow('closing', closing) cv2.waitKey(0) cv2.destroyAllWindows()
4.梯度运算(绘制图像的边框)
# 梯度=膨胀-腐蚀 pie = cv2.imread('pie.png') kernel = np.ones((7, 7), np.uint8) dilate = cv2.dilate(pie, kernel, iterations = 5) erosion = cv2.erode(pie, kernel, iterations = 5) res = np.hstack((dilate, erosion)) cv2.imshow('res', res) # 梯度运算 gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel) cv2.imshow('gradient', gradient) cv2.waitKey(0) cv2.destroyAllWindows()
5.礼帽与黑帽
- 礼帽 = 原始输入-开运算结果
- 黑帽 = 闭运算-原始输入
img = cv2.imread('dige.png') kernel = np.ones((7, 7), np.uint8) #礼帽 tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel) cv2.imshow('tophat', tophat) #黑帽 blackhat = cv2.morphologyEx(img,cv2.MORPH_BLACKHAT, kernel) cv2.imshow('blackhat ', blackhat )