图像分析之阈值与平滑处理
1.图像阈值
#### ret, dst = cv2.threshold(src, thresh, maxval, type)
- src: 输入图,只能输入单通道图像,通常来说为灰度图
- dst: 输出图
- thresh: 阈值
- maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
- type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV
- cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0
- cv2.THRESH_BINARY_INV THRESH_BINARY的反转
- cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变
- cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0
- cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转
import cv2 #opencv读取的格式是BGR import numpy as np import matplotlib.pyplot as plt#Matplotlib是RGB img=cv2.imread('cat.jpg') img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY) ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV) ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC) ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO) ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV) titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV'] images = [img, thresh1, thresh2, thresh3, thresh4, thresh5] for i in range(6): plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray') plt.title(titles[i]) plt.xticks([]), plt.yticks([]) plt.show()
2.平滑处理
1)均值滤波
# 均值滤波 # 简单的平均卷积操作 img = cv2.imread('lena.jpg') blur = cv2.blur(img, (3, 3)) cv2.imshow('img', img) cv2.imshow('blur', blur) cv2.waitKey(0) cv2.destroyAllWindows()
2)
# 方框滤波,normalize为TRUE时就和均值滤波一样 # 基本和均值一样,可以选择归一化,容易越界 box = cv2.boxFilter(img, -1, (3, 3), normalize=False) cv2.imshow('box', box)
3)
# 高斯滤波 # 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的 aussian = cv2.GaussianBlur(img, (5, 5), 1) cv2.imshow('aussian', aussian)
4)
# 中值滤波 # 相当于用中值代替 median = cv2.medianBlur(img, 5) # 中值滤波 cv2.imshow('median', median)
3.一次性拼接展示多个图片
# 展示所有的 res = np.hstack((blur, aussian, median)) res2 = np.vstack((blur, aussian, median)) cv2.imshow('median vs average', res) cv2.imshow('median vs average', res2)