图像分析之阈值与平滑处理

1.图像阈值


#### ret, dst = cv2.threshold(src, thresh, maxval, type)

- src: 输入图,只能输入单通道图像,通常来说为灰度图
- dst: 输出图
- thresh: 阈值
- maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
- type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

- cv2.THRESH_BINARY           超过阈值部分取maxval(最大值),否则取0
- cv2.THRESH_BINARY_INV    THRESH_BINARY的反转
- cv2.THRESH_TRUNC            大于阈值部分设为阈值,否则不变
- cv2.THRESH_TOZERO          大于阈值部分不改变,否则设为0
- cv2.THRESH_TOZERO_INV  THRESH_TOZERO的反转
import cv2 #opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB

img=cv2.imread('cat.jpg')
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)

titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

2.平滑处理

1)均值滤波

# 均值滤波
# 简单的平均卷积操作
img = cv2.imread('lena.jpg')
blur = cv2.blur(img, (3, 3))
cv2.imshow('img', img)
cv2.imshow('blur', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

2)

# 方框滤波,normalize为TRUE时就和均值滤波一样
# 基本和均值一样,可以选择归一化,容易越界
box = cv2.boxFilter(img, -1, (3, 3), normalize=False)
cv2.imshow('box', box)

3)

# 高斯滤波
# 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
aussian = cv2.GaussianBlur(img, (5, 5), 1)
cv2.imshow('aussian', aussian)

4)

# 中值滤波
# 相当于用中值代替
median = cv2.medianBlur(img, 5)  # 中值滤波
cv2.imshow('median', median)

3.一次性拼接展示多个图片

# 展示所有的
res = np.hstack((blur, aussian, median))
res2 = np.vstack((blur, aussian, median))
cv2.imshow('median vs average', res)
cv2.imshow('median vs average', res2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
posted @ 2020-11-16 14:34  ☞@_@  阅读(143)  评论(0编辑  收藏  举报