用线性回归简单预测波士顿房价

这次我们会用线性回归来预测波士顿的房价

首先是导入波士顿房价的数据,这是sklearn中的datasets自带的

from sklearn import datasets
boston = datasets.load_boston()

先用key方法查看数据集

print(boston.keys())

得到结果

dict_keys(['data', 'target', 'feature_names', 'DESCR'])

这里的data有13个维度,target就是我们要预测的房价,接下来再查看feature_names

print(boston['feature_names'])
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO' 'B' 'LSTAT']

其中'RM'列就是我们需要的房间数,接下为了方便处理,我们将其转为DataFrame类型,并进行数据划分得到训练集和测试集

data = pd.DataFrame(boston['data'],columns=boston['feature_names'])
x = pd.DataFrame(data['RM'],columns=['RM'])
y = pd.DataFrame(boston['target'],columns=['target'])
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.33, random_state=42)

接下来训练线性回归模型,并进行预测

lr = LinearRegression()
lr.fit(x_train,y_train)
y_pre = lr.predict(x_test)

为了评价模型的好坏,我们将从以下的均方误差(MSE),均方根误差(RMSE),平均绝对误差(MAE),R Squared

from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error 
from sklearn.metrics import mean_absolute_error 
print(r2_score(y_test,y_pre))
print(mean_absolute_error(y_test,y_pre))
print(mean_squared_error(y_test,y_pre))

结果为

0.4834590168919489
4.271512885857222
39.09105111486995

下面用python实现这四种评价指标

def MSE(y_test,y_pre):
    print(((y_test - y_pre)**2).sum() / len(y_pre))
def RMSE(y_test,y_pre):
    print((((y_test - y_pre)**2).sum() / len(y_pre))**0.5)
def MAE(y_test,y_pre):
    y1 = np.array(y_test)
    y2 = np.array(y_pre)
    print(np.sum(np.absolute(y1 - y2))/len(y1))
def r2_score_(y_test,y_pre):
    print(1 - ((y_test - y_pre)**2).sum() / ((y_test - y_test.mean())**2).sum())

MSE(y_test,y_pre)
MAE(y_test,y_pre)
r2_score_(y_test,y_pre)

结果为

target    39.091051
dtype: float64
4.271512885857222
target    0.483459
dtype: float64

 

posted @ 2019-03-03 20:30  mambakb  阅读(3964)  评论(0编辑  收藏  举报