个人GAN训练的性能迭代
使用GAN进行生成图片
损失函数的迭代
DCGAN->Wasserstein GAN-> Wasserstein GAN + Gradient Penalty
Discriminator训练代码编写的细节:真图像和假图像要分批送入Discriminator,分批计算梯度(后面算出的梯度会累加到前面的梯度上面)。
模型的迭代
Upsample Method
Transposed convolutional layer有Checkerboard问题,但效果尚可。
Upsample layer运算量大,效果一般。
Subpixel layer效果暂时不好。
训练方法的迭代
- 一个Epoch中Discriminator和Generator各训练一次->一个Epoch中Discriminator训练多次,提升精度;Generator训练一次。
- 使用WGAN+GP则Generator不要Batch Normalization。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· DeepSeek在M芯片Mac上本地化部署