1.5.1 Number Triangles
Number Triangles
Consider the number triangle shown below. Write a program that calculates the highest sum of numbers that can be passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.
7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
In the sample above, the route from 7 to 3 to 8 to 7 to 5 produces the highest sum: 30.
PROGRAM NAME: numtri
INPUT FORMAT
The first line contains R (1 <= R <= 1000), the number of rows. Each subsequent line contains the integers for that particular row of the triangle. All the supplied integers are non-negative and no larger than 100.
SAMPLE INPUT (file numtri.in)
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
OUTPUT FORMAT
A single line containing the largest sum using the traversal specified.
SAMPLE OUTPUT (file numtri.out)
30
{ ID: makeeca1 PROG: numtri LANG: PASCAL } program numtri; var n,i,j,ans:longint; a,f:array[0..1100,0..1100]of longint; function max(xx,yy:longint):longint; begin if xx>yy then exit(xx)else exit(yy);end; begin assign(input,'numtri.in');reset(input); assign(output,'numtri.out');rewrite(output); readln(n); for i:=1 to n do begin for j:=1 to i do read(a[i,j]); readln; end; ans:=0; f[1,1]:=a[1,1]; for i:=2 to n do for j:=1 to n do begin f[i,j]:=max(f[i-1,j],f[i-1,j-1])+a[i,j]; ans:=max(ans,f[i,j]); end; writeln(ans); close(input);close(output); end.