System.currentTimeMillis()的性能问题以及解决方法
System.currentTimeMillis()是极其常用的基础Java API,广泛地用来获取时间戳或测量代码执行时长等,在我们的印象中应该快如闪电。但实际上在并发调用或者特别频繁调用它的情况下(比如一个业务繁忙的接口,或者吞吐量大的需要取得时间戳的流式程序),其性能表现会令人大跌眼镜。
public class CurrentTimeMillisPerfDemo { private static final int COUNT = 100; public static void main(String[] args) throws Exception { long beginTime = System.nanoTime(); for (int i = 0; i < COUNT; i++) { System.currentTimeMillis(); } long elapsedTime = System.nanoTime() - beginTime; System.out.println("100 System.currentTimeMillis() serial calls: " + elapsedTime + " ns"); CountDownLatch startLatch = new CountDownLatch(1); CountDownLatch endLatch = new CountDownLatch(COUNT); for (int i = 0; i < COUNT; i++) { new Thread(() -> { try { startLatch.await(); System.currentTimeMillis(); } catch (InterruptedException e) { e.printStackTrace(); } finally { endLatch.countDown(); } }).start(); } beginTime = System.nanoTime(); startLatch.countDown(); endLatch.await(); elapsedTime = System.nanoTime() - beginTime; System.out.println("100 System.currentTimeMillis() parallel calls: " + elapsedTime + " ns"); } }
可见而知,单线程执行System.currentTimeMillis();比多线程并发执行System.currentTimeMillis();快了许多倍。
为什么会这样?
来到HotSpot源码的hotspot/src/os/linux/vm/os_linux.cpp文件中,有一个javaTimeMillis()方法,这就是System.currentTimeMillis()的native实现。
挖源码就到此为止,因为已经有国外大佬深入到了汇编的级别来探究,详情可以参见《The Slow currentTimeMillis()》这篇文章。简单来讲就是:
调用gettimeofday()需要从用户态切换到内核态;
gettimeofday()的表现受Linux系统的计时器(时钟源)影响,在HPET计时器下性能尤其差;
系统只有一个全局时钟源,高并发或频繁访问会造成严重的争用。
HPET计时器性能较差的原因是会将所有对时间戳的请求串行执行。TSC计时器性能较好,因为有专用的寄存器来保存时间戳。缺点是可能不稳定,因为它是纯硬件的计时器,频率可变(与处理器的CLK信号有关)。关于HPET和TSC的细节可以参见https://en.wikipedia.org/wiki/HighPrecisionEventTimer与https://en.wikipedia.org/wiki/TimeStamp_Counter。
如何解决这个问题?
最常见的办法是用单个调度线程来按毫秒更新时间戳,相当于维护一个全局缓存。其他线程取时间戳时相当于从内存取,不会再造成时钟资源的争用,代价就是牺牲了一些精确度。具体代码如下。
public class SystemClock { private static final SystemClock MILLIS_CLOCK = new SystemClock(1); private final long precision; private final AtomicLong now; private SystemClock(long precision) { this.precision = precision; now = new AtomicLong(System.currentTimeMillis()); scheduleClockUpdating(); } public static SystemClock millisClock() { return MILLIS_CLOCK; } private void scheduleClockUpdating() { ScheduledExecutorService scheduler = Executors.newSingleThreadScheduledExecutor(runnable -> { Thread thread = new Thread(runnable, "system.clock"); thread.setDaemon(true); return thread; }); scheduler.scheduleAtFixedRate(() -> now.set(System.currentTimeMillis()), precision, precision, TimeUnit.MILLISECONDS); } public long now() { return now.get(); }
}
可以使用并发量大的情况下SystemClock.millisClock().now()
输出当前时间,有一定精度上问题,得到是时间获取上效率。
静态内部类写法
package cn.ucaner.alpaca.common.util.key; import java.sql.Timestamp; import java.util.concurrent.*; import java.util.concurrent.atomic.AtomicLong; /** * 高并发场景下System.currentTimeMillis()的性能问题的优化 * <p><p> * System.currentTimeMillis()的调用比new一个普通对象要耗时的多(具体耗时高出多少我还没测试过,有人说是100倍左右)<p> * System.currentTimeMillis()之所以慢是因为去跟系统打了一次交道<p> * 后台定时更新时钟,JVM退出时,线程自动回收<p> * 10亿:43410,206,210.72815533980582%<p> * 1亿:4699,29,162.0344827586207%<p> * 1000万:480,12,40.0%<p> * 100万:50,10,5.0%<p> * @author lry */ public class SystemClock { private final long period; private final AtomicLong now; ExecutorService executor = Executors.newSingleThreadExecutor(); private SystemClock(long period) { this.period = period; this.now = new AtomicLong(System.currentTimeMillis()); scheduleClockUpdating(); } private static class InstanceHolder { public static final SystemClock INSTANCE = new SystemClock(1); } private static SystemClock instance() { return InstanceHolder.INSTANCE; } private void scheduleClockUpdating() { ScheduledExecutorService scheduler = Executors.newSingleThreadScheduledExecutor(new ThreadFactory() { @Override public Thread newThread(Runnable runnable) { Thread thread = new Thread(runnable, "System Clock"); thread.setDaemon(true); return thread; } }); scheduler.scheduleAtFixedRate(new Runnable() { @Override public void run() { now.set(System.currentTimeMillis()); } }, period, period, TimeUnit.MILLISECONDS); } private long currentTimeMillis() { return now.get(); } public static long now() { return instance().currentTimeMillis(); } public static String nowDate() { return new Timestamp(instance().currentTimeMillis()).toString(); } /** * @Description: Just for test * @param args void * @throws InterruptedException * @Autor: Jason - jasonandy@hotmail.com */ public static void main(String[] args) throws InterruptedException { for (int i = 0; i < 100; i++) { System.out.println(nowDate()); Thread.sleep(1000); } } } //Outputs //2018-05-10 15:37:18.774 //2018-05-10 15:37:19.784 //2018-05-10 15:37:20.784 //2018-05-10 15:37:21.785 //2018-05-10 15:37:22.784 //2018-05-10 15:37:23.784 //2018-05-10 15:37:24.785 //2018-05-10 15:37:25.784 //2018-05-10 15:37:26.785 //2018-05-10 15:37:27.786 //2018-05-10 15:37:28.785 //2018-05-10 15:37:29.785 //2018-05-10 15:37:30.785 //2018-05-10 15:37:31.785