C# ManualResetEventSlim 实现
ManualResetEventSlim通过封装 ManualResetEvent提供了自旋等待和内核等待的组合。如果需要跨进程或者跨AppDomain的同步,那么就必须使用ManualResetEvent,而不能使用ManualResetEventSlim。那么首先我们看看 ManualResetEvent和AutoResetEvent的使用特点,只有搞清楚了ManualResetEvent才可能明白ManualResetEventSlim的好处。
ManualResetEvent和AutoResetEvent的共同点:
1)Set方法将事件状态设置为终止状态,允许一个或多个等待线程继续;Reset方法将事件状态设置为非终止状态,导致线程阻止;WaitOne阻止当前线程,直到当前线程的WaitHandler收到事件信号。
2)可以通过构造函数的参数值来决定其初始状态,若为true则事件为终止状态从而使线程为非阻塞状态,为false则线程为阻塞状态。
3)如果某个线程调用WaitOne方法,则当事件状态为终止状态时,该线程会得到信号,继续向下执行。
ManualResetEvent和AutoResetEvent的不同点:
1)AutoResetEvent.WaitOne()每次只允许一个线程进入,当某个线程得到信号后,AutoResetEvent会自动又将信号置为不发送状态,则其他调用WaitOne的线程只有继续等待,也就是说AutoResetEvent一次只唤醒一个线程;
2)ManualResetEvent则可以唤醒多个线程,因为当某个线程调用了ManualResetEvent.Set()方法后,其他调用WaitOne的线程获得信号得以继续执行,而ManualResetEvent不会自动将信号置为不发送。
3)也就是说,除非手工调用了ManualResetEvent.Reset()方法,则ManualResetEvent将一直保持有信号状态,ManualResetEvent也就可以同时唤醒多个线程继续执行。
AutoResetEvent myResetEvent = new AutoResetEvent(false)
构造方法的参数设置成false后,表示创建一个没有被set的AutoResetEvent,这就导致所有持有这个AutoResetEvent的线程都会在WaitOne()处挂起, 如果将参数设置成true,表示创建一个被set的AutoResetEvent,持有这个AutoResetEvent的线程们会竞争这个Event ,此时在其他条件满足的情况下,至少会有一个线程得到执行,而不是因得不到Event而导致所有线程都得不到执行
ManualResetEvent myResetEvent = new ManualResetEvent(false)
构造方法的参数设置成false后,表示创建一个没有被set的ManualResetEvent,这就导致所有持有这个ManualResetEvent的线程都会在WaitOne()处挂起 ,如果将参数设置成true,表示创建一个被set的ManualResetEvent ,持有这个ManualResetEvent的线程们在其他条件满足的情况下会同时得到执行(注意,是同时得到执行);而不是因得不到Event而导致所有线程都得不到执行
我们来看看ManualResetEventSlim的实现:
public class ManualResetEventSlim : IDisposable { private volatile object m_lock; // A lock used for waiting and pulsing. Lazily initialized via EnsureLockObjectCreated() private volatile ManualResetEvent m_eventObj; // A true Win32 event used for waiting. private const int DEFAULT_SPIN_MP = SpinWait.YIELD_THRESHOLD; //10 public ManualResetEventSlim(bool initialState) { // Specify the defualt spin count, and use default spin if we're // on a multi-processor machine. Otherwise, we won't. Initialize(initialState, DEFAULT_SPIN_MP); } public void Set() { Set(false); } private void Set(bool duringCancellation) { // We need to ensure that IsSet=true does not get reordered past the read of m_eventObj // This would be a legal movement according to the .NET memory model. // The code is safe as IsSet involves an Interlocked.CompareExchange which provides a full memory barrier. IsSet = true; // If there are waiting threads, we need to pulse them. if (Waiters > 0) { Contract.Assert(m_lock != null); //if waiters>0, then m_lock has already been created. lock (m_lock) { Monitor.PulseAll(m_lock); } } ManualResetEvent eventObj = m_eventObj; if (eventObj != null && !duringCancellation) { lock (eventObj) { if (m_eventObj != null) { // If somebody is waiting, we must set the event. m_eventObj.Set(); } } } } public void Reset() { ThrowIfDisposed(); // If there's an event, reset it. if (m_eventObj != null) { m_eventObj.Reset(); } IsSet = false; } public bool Wait(int millisecondsTimeout, CancellationToken cancellationToken) { ThrowIfDisposed(); cancellationToken.ThrowIfCancellationRequested(); // an early convenience check if (millisecondsTimeout < -1) { throw new ArgumentOutOfRangeException("millisecondsTimeout"); } if (!IsSet) { if (millisecondsTimeout == 0) { // For 0-timeouts, we just return immediately. return false; } // We spin briefly before falling back to allocating and/or waiting on a true event. uint startTime = 0; bool bNeedTimeoutAdjustment = false; int realMillisecondsTimeout = millisecondsTimeout; //this will be adjusted if necessary. if (millisecondsTimeout != Timeout.Infinite) { startTime = TimeoutHelper.GetTime(); bNeedTimeoutAdjustment = true; } //spin int HOW_MANY_SPIN_BEFORE_YIELD = 10; int HOW_MANY_YIELD_EVERY_SLEEP_0 = 5; int HOW_MANY_YIELD_EVERY_SLEEP_1 = 20; int spinCount = SpinCount; for (int i = 0; i < spinCount; i++) { if (IsSet) { return true; } else if (i < HOW_MANY_SPIN_BEFORE_YIELD) { if (i == HOW_MANY_SPIN_BEFORE_YIELD / 2) { Thread.Yield(); } else { Thread.SpinWait(PlatformHelper.ProcessorCount * (4 << i)); } } else if (i % HOW_MANY_YIELD_EVERY_SLEEP_1 == 0) { Thread.Sleep(1); } else if (i % HOW_MANY_YIELD_EVERY_SLEEP_0 == 0) { Thread.Sleep(0); } else { Thread.Yield(); } if (i >= 100 && i % 10 == 0) // check the cancellation token if the user passed a very large spin count cancellationToken.ThrowIfCancellationRequested(); } // Now enter the lock and wait. EnsureLockObjectCreated(); // We must register and deregister the token outside of the lock, to avoid deadlocks. using (cancellationToken.InternalRegisterWithoutEC(s_cancellationTokenCallback, this)) { lock (m_lock) { // Loop to cope with spurious wakeups from other waits being canceled while (!IsSet) { // If our token was canceled, we must throw and exit. cancellationToken.ThrowIfCancellationRequested(); //update timeout (delays in wait commencement are due to spinning and/or spurious wakeups from other waits being canceled) if (bNeedTimeoutAdjustment) { realMillisecondsTimeout = TimeoutHelper.UpdateTimeOut(startTime, millisecondsTimeout); if (realMillisecondsTimeout <= 0) return false; } Waiters = Waiters + 1; if (IsSet) //This check must occur after updating Waiters. { Waiters--; //revert the increment. return true; } // Now finally perform the wait. try { // ** the actual wait ** if (!Monitor.Wait(m_lock, realMillisecondsTimeout)) return false; //return immediately if the timeout has expired. } finally { // Clean up: we're done waiting. Waiters = Waiters - 1; } } } } } // automatically disposes (and deregisters) the callback return true; //done. The wait was satisfied. } private void EnsureLockObjectCreated() { Contract.Ensures(m_lock != null); if (m_lock != null) return; object newObj = new object(); Interlocked.CompareExchange(ref m_lock, newObj, null); // failure is benign.. someone else won the ----. } private static Action<object> s_cancellationTokenCallback = new Action<object>(CancellationTokenCallback); private static void CancellationTokenCallback(object obj) { ManualResetEventSlim mre = obj as ManualResetEventSlim; Contract.Assert(mre != null, "Expected a ManualResetEventSlim"); Contract.Assert(mre.m_lock != null); //the lock should have been created before this callback is registered for use. lock (mre.m_lock) { Monitor.PulseAll(mre.m_lock); // awaken all waiters } } } public sealed class ManualResetEvent : EventWaitHandle { public ManualResetEvent(bool initialState) : base(initialState,EventResetMode.ManualReset){} }
其中的Reset方法最简单就是调用 ManualResetEvent的Reset方法,Set方法也是调用ManualResetEvent的Set方法,只是在Set方法前需要把等待队列的线程转换为就绪状态【lock (m_lock){Monitor.PulseAll(m_lock);}】,ManualResetEventSlim 与ManualResetEvent的区别主要是Wait方法里面增加了自旋。
这里面的using (cancellationToken.InternalRegisterWithoutEC(s_cancellationTokenCallback, this))也是非常重要,Monitor.Wait方法只是把线程放到等待队列,调用ManualResetEvent的Set方法会调用 Monitor.PulseAll(m_lock);,但是在调用ManualResetEvent的wait方法,里面调用了cancellationToken.ThrowIfCancellationRequested()该如何处理,这个时候的lock锁没有释放,需要调用 Monitor.PulseAll方法,所以该方法被方放到CancellationTokenCallback里面