数据结构化与保存

1. 将新闻的正文内容保存到文本文件。

def writeNewsDetail(content):
f = open('gzccnews.txt', 'a', encoding='utf-8')
f.write(content)
f.close()

2. 将新闻数据结构化为字典的列表:

单条新闻的详情-->字典news
一个列表页所有单条新闻汇总-->列表newsls.append(news)
所有列表页的所有新闻汇总列表newstotal.extend(newsls)
#将获取新闻详情的代码定义成一个函数 def getNewDetail(newsUrl):

def getNewsDetail(url):
resd = requests.get(url)
resd.encoding = 'utf-8'
soupd = BeautifulSoup(resd.text,'html.parser')
# print(resd.text)
news = {}
# 标题
news['title'] = soupd.select('.show-title')[0].text
# 时间
info = soupd.select('.show-info')[0].text
# print(info)
news['time'] = datetime.strptime(info.lstrip('发布时间:')[0:19],'%Y-%m-%d %H:%M:%S')
# print(news['time'])
# 来源
if info.find('来源:')>0:
news['source'] = info[info.find('来源:'):].split()[0].lstrip('来源:')
else:
news['source'] = 'none'
# 点击次数
news['clickCount'] = int(getClickCount(url))
news['newsUrl'] = url
# print(clickCount)
# print('标题:' + ti + ' 时间:' + tim + ' 来源:' + source + ' 点击次数:' + clickCount + ' 链接: ' + url)
# 正文
# print('正文:')
news['content'] = soupd.select('.show-content')[0].text.strip()
# cl = tuple(content)
# df = cl.__str__()
# print(news['content'])
writeNewsDetail(news['content'])
return(news)
# for c in content:
# print(c)

  


3. 安装pandas,用pandas.DataFrame(newstotal),创建一个DataFrame对象df.

import pandas
newstotal = [{}]
df = pandas.DataFrame(newstotal)

4. 通过df将提取的数据保存到csv或excel 文件。

import openpyxl
# 导入excel文件
df.to_excel('gzccnews.xlsx')

  


5. 用pandas提供的函数和方法进行数据分析:

提取包含点击次数、标题、来源的前6行数据
print(df[['title','clickCount','source']][:6])
提取‘学校综合办’发布的,‘点击次数’超过3000的新闻。
print(df[(df['clickCount']>3000)&(df['source']=='学校综合办')])
提取'国际学院'和'学生工作处'发布的新闻。
sou = ['国际学院','学生工作处']
print(df[df['source'].isin(sou)])
进取2018年3月的新闻
df1 = df.set_index('time')
print(df1['2018-03'])
6. 保存到sqlite3数据库

import sqlite3
with sqlite3.connect('gzccnewsdb.sqlite') as db:
df3.to_sql('gzccnews05',con = db, if_exists='replace')

  

7. 从sqlite3读数据

with sqlite3.connect('gzccnewsdb.sqlite') as db:
df2 = pandas.read_sql_query('SELECT * FROM gzccnews05',con=db)
print(df2)

  

8. df保存到mysql数据库

安装SQLALchemy
安装PyMySQL
MySQL里创建数据库:create database gzccnews charset utf8;

import pymysql
from sqlalchemy import create_engine
conn = create_engine('mysql+pymysql://root:root@localhost:3306/gzccnews?charset=utf8')
pandas.io.sql.to_sql(df, 'gzccnews', con=conn, if_exists='replace')

MySQL里查看已保存了数据。(通过MySQL Client或Navicate。)

posted @ 2018-04-19 08:20  黄俊熙  阅读(115)  评论(0编辑  收藏  举报