bzoj3997[TJOI2015]组合数学
http://www.lydsy.com/JudgeOnline/problem.php?id=3997
偏序集,看上一篇随笔。
我们要求最少路径覆盖,可以等价于求最大独立集。
我们要找到一个权值和最大的点集$S$,使得对于点集中任意两个点$点i$和$点j$,使得$点i$不能到$点j$,就是要求$点i$严格在$点j$的右上方或左下方。
用DP可以在$O(N^2)$内解决。
#include<cstdio> #include<cstdlib> #include<iostream> #include<fstream> #include<algorithm> #include<cstring> #include<string> #include<cmath> #include<queue> #include<stack> #include<map> #include<utility> #include<set> #include<bitset> #include<vector> #include<functional> #include<deque> #include<cctype> #include<climits> #include<complex> //#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL; typedef double DB; typedef pair<int,int> PII; typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a)) #define mmcy(a,b) memcpy(a,b,sizeof(a)) #define fill(a,l,r,v) fill(a+l,a+r+1,v) #define re(i,a,b) for(i=(a);i<=(b);i++) #define red(i,a,b) for(i=(a);i>=(b);i--) #define ire(i,x) for(typedef(x.begin()) i=x.begin();i!=x.end();i++) #define fi first #define se second #define m_p(a,b) make_pair(a,b) #define p_b(a) push_back(a) #define SF scanf #define PF printf #define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;} template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;} template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} inline int sgn(DB x){if(abs(x)<1e-9)return 0;return(x>0)?1:-1;} const DB Pi=acos(-1.0); int gint() { int res=0;bool neg=0;char z; for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar()); if(z==EOF)return 0; if(z=='-'){neg=1;z=getchar();} for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar()); return (neg)?-res:res; } LL gll() { LL res=0;bool neg=0;char z; for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar()); if(z==EOF)return 0; if(z=='-'){neg=1;z=getchar();} for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar()); return (neg)?-res:res; } const int maxn=1000; int n,m; int mp[maxn+10][maxn+10]; LL f[maxn+10][maxn+10]; int main() { freopen("bzoj3997.in","r",stdin); freopen("bzoj3997.out","w",stdout); int i,j; for(int Case=gint();Case;Case--) { n=gint();m=gint(); re(i,1,n)re(j,1,m)mp[i][j]=gint(); mmst(f,0); re(i,1,n)red(j,m,1)f[i][j]=max(f[i-1][j+1]+mp[i][j],max(f[i][j+1],f[i-1][j])); cout<<f[n][1]<<endl; } return 0; }