bzoj3629[JLOI2014]聪明的燕姿
http://www.lydsy.com/JudgeOnline/problem.php?id=3629
搜索。
我们知道:
如果$N=\prod\limits_{i=1}^{m}p_{i}^{k_{i}}$,其中$p_{i}$为质数,那么N的约数和为$\prod\limits_{i=1}^{m}(p_{i}^{0}+p_{i}^{2}+...+p_{i}^{k_{i}})$
如$36=2^{2}*3^{2}$,那么$36$的约数和为$(2^{0}+2^{1}+2^{2})*(3^{0}+3^{1}+3^{2})=91$
我们搜索找到所有合法最小的$p_{i}$和它次数$k_{i}$,然后DFS进入下一次搜索中。
如果发现当前的约数和为一个质数+1,我们可以加到答案去。
觉得答案的个数很少。
#include<cstdio> #include<cstdlib> #include<iostream> #include<fstream> #include<algorithm> #include<cstring> #include<string> #include<cmath> #include<queue> #include<stack> #include<map> #include<utility> #include<set> #include<bitset> #include<vector> #include<functional> #include<deque> #include<cctype> #include<climits> #include<complex> //#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL; typedef double DB; typedef pair<int,int> PII; typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a)) #define mmcy(a,b) memcpy(a,b,sizeof(a)) #define fill(a,l,r,v) fill(a+l,a+r+1,v) #define re(i,a,b) for(i=(a);i<=(b);i++) #define red(i,a,b) for(i=(a);i>=(b);i--) #define ire(i,x) for(typedef(x.begin()) i=x.begin();i!=x.end();i++) #define fi first #define se second #define m_p(a,b) make_pair(a,b) #define p_b(a) push_back(a) #define SF scanf #define PF printf #define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;} template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;} template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-9; inline int sgn(DB x){if(abs(x)<EPS)return 0;return(x>0)?1:-1;} const DB Pi=acos(-1.0); inline int gint() { int res=0;bool neg=0;char z; for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar()); if(z==EOF)return 0; if(z=='-'){neg=1;z=getchar();} for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar()); return (neg)?-res:res; } inline LL gll() { LL res=0;bool neg=0;char z; for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar()); if(z==EOF)return 0; if(z=='-'){neg=1;z=getchar();} for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar()); return (neg)?-res:res; } const int maxN=100000; int N=maxN; int flag[maxN+100]; int cnt,p[maxN+100]; int S; int ge,out[maxN+1000]; inline int isprime(int v) { if(v<=N)return !flag[v]; int i;for(i=1;i<=cnt && p[i]*p[i]<=v;i++)if(v%p[i]==0)return 0; return 1; } inline void DFS(int last,int now,int tot) { if(tot==1){out[++ge]=now;return;} if(isprime(tot-1) && tot-1>p[last]) out[++ge]=now*(tot-1); for(int i=last+1;i<=cnt;i++) for(int j=p[i],k=p[i]+1;k<=tot;j=j*p[i],k+=j) if(tot%k==0) DFS(i,now*j,tot/k); } int main() { freopen("bzoj3629.in","r",stdin); freopen("bzoj3629.out","w",stdout); int i,j; flag[1]=1; re(i,2,N) { if(!flag[i])p[++cnt]=i; for(j=1;j<=cnt && i*p[j]<=N;j++) { flag[i*p[j]]=1; if(i%p[j]==0)break; } } while(SF("%d\n",&S)!=EOF) { ge=0; DFS(0,1,S); sort(out+1,out+ge+1); ge=unique(out+1,out+ge+1)-out-1; PF("%d\n",ge); re(i,1,ge)PF("%d%c",out[i],i==ge?'\n':' '); } return 0; }