bzoj 1196
http://www.lydsy.com/JudgeOnline/problem.php?id=1196
二分+并查集
一共有2*M条路径,我们首先将这2*M条路径按费用排序。
然后二分最大费用的公路mid
变成判断性问题:能否只用第1到第mid条公路,使得生成树至少包含K条一级公路。
因为这时候已经跟费用无关了,我们优先选取一级公路即可。
#include<cstdio> #include<cstdlib> #include<iostream> #include<fstream> #include<algorithm> #include<cstring> #include<string> #include<cmath> #include<queue> #include<stack> #include<map> #include<utility> #include<set> #include<bitset> #include<vector> #include<functional> #include<deque> #include<cctype> #include<climits> #include<complex> //#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL; typedef double DB; typedef pair<int,int> PII; typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a)) #define mmcy(a,b) memcpy(a,b,sizeof(a)) #define fill(a,l,r,v) fill(a+l,a+r+1,v) #define re(i,a,b) for(i=(a);i<=(b);i++) #define red(i,a,b) for(i=(a);i>=(b);i--) #define ire(i,x) for(typedef(x.begin()) i=x.begin();i!=x.end();i++) #define fi first #define se second #define m_p(a,b) make_pair(a,b) #define SF scanf #define PF printf #define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;} template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;} template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-9; inline int sgn(DB x){if(abs(x)<EPS)return 0;return(x>0)?1:-1;} const DB Pi=acos(-1.0); inline int gint() { int res=0;bool neg=0;char z; for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar()); if(z==EOF)return 0; if(z=='-'){neg=1;z=getchar();} for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar()); return (neg)?-res:res; } inline LL gll() { LL res=0;bool neg=0;char z; for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar()); if(z==EOF)return 0; if(z=='-'){neg=1;z=getchar();} for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar()); return (neg)?-res:res; } const int maxN=10000; const int maxM=2*20000; int N,K,M; struct Troad { int x,y,id,p,cost; inline Troad(int _id=0,int _p=0,int _x=0,int _y=0,int _cost=0){id=_id;p=_p;x=_x;y=_y;cost=_cost;} }road[maxM+100]; inline bool cmpcost(Troad a,Troad b){return a.cost<b.cost;} int pa[maxN+100]; inline int findroot(int a){return pa[a]<0?a:pa[a]=findroot(pa[a]);} inline void uni(int a,int b) { int f1=findroot(a),f2=findroot(b); if(f1==f2)return; if(pa[f1]>pa[f2])swap(f1,f2); pa[f1]+=pa[f2]; pa[f2]=f1; } inline int check(int mid) { int i,cnt=0; mmst(pa,-1); re(i,1,mid) if(road[i].p==1) if(findroot(road[i].x)!=findroot(road[i].y)) { uni(road[i].x,road[i].y); cnt++; } if(cnt<K)return 0; re(i,1,mid)uni(road[i].x,road[i].y); re(i,1,N)if(findroot(i)!=findroot(1))return 0; return 1; } struct Tout { int id,p; inline Tout(int _id=0,int _p=0){id=_id;p=_p;} }out[maxN+10]; int ge; inline bool cmpid(Tout a,Tout b){return a.id<b.id;} int main() { freopen("road.in","r",stdin); freopen("road.out","w",stdout); int i; N=gint();K=gint();M=gint(); re(i,1,M) { int x=gint(),y=gint(),c1=gint(),c2=gint(); road[2*i-1]=Troad(i,1,x,y,c1); road[2*i]=Troad(i,2,x,y,c2); } M*=2; sort(road+1,road+M+1,cmpcost); int l=1,r=M,mid; while(l<=r) { mid=(l+r)>>1; if(check(mid))r=mid-1;else l=mid+1; } cout<<road[l].cost<<endl; mmst(pa,-1); re(i,1,l) if(road[i].p==1) if(findroot(road[i].x)!=findroot(road[i].y)) { uni(road[i].x,road[i].y); out[++ge]=Tout(road[i].id,road[i].p); } re(i,1,l)if(findroot(road[i].x)!=findroot(road[i].y)) { uni(road[i].x,road[i].y); out[++ge]=Tout(road[i].id,road[i].p); } sort(out+1,out+ge+1,cmpid); re(i,1,ge)cout<<out[i].id<<" "<<out[i].p<<endl; return 0; }