bzoj1145
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1145
神题。。。。。。
定义f(abcd)为高度排名为abcd的个数,例如闪电的个数为f(1324)。
我们化简一下:
f(1324)-f(1243)-f(1432)
=f(1x2x)-f(1423)-f(12xx)+f(1234)-f(14xx)+f(1423)
=f(1x2x)+f(1234)-f(12xx)-f(14xx)
=f(1x2x)+f(1234)-[f(1xxx)-f(13xx)]
=f(1x2x)+f(13xx)+f(1234)-f(1xxx)
实验变成求f(1x2x),f(13xx),f(1234)和f(1xxx)。
其中f(1234)和f(1xxx)都比较好求,我们来重点讨论f(1x2x)和f(13xx)。
首先预处理出两个比较重要的数组l[i]和r[i]。l[i]表示1到i-1小于a[i]的个数;r[i]表示i+1到N中小于a[i]的个数。
--------------------------------------------------------------------------------------------------------------------------------------------
f(1x2x):
我们在2的位置进行统计,不妨记2的位置为i。为方便识别,我们在位置i那里涂成红色,即f(1x2x)。
容易发现,如果我们知道了f(132),那么f(1x2x)=f(132)*(N-i-r[i])。
于是变成了求f(132)。
132
=(132+312+123+213)-(312+123+213)
观察第1个括号:132 312 123 213
我们发现他们左边两个黑色的数中,其中一个小于红色的数,另一个可以大于或小于红色的数。
所以第1个括号为:l[i]*(l[i]-1)/2+l[i]*(i-1-l[i])
观察第2个括号:312 123 213
我们发现他们第2个黑色的数小于红色的数,第1个黑色的数没有限制。
所以第2个括号为:∑(j-1)(j<i且a[j]<a[i])
这个可以用树状数组实现。
--------------------------------------------------------------------------------------------------------------------------------------------
f(13xx):
我们在3的位置进行统计,记3的位置为i,把位置i那里涂成红色,即f(13xx)。
同样容易发现,如果我们知道了f(132),那么f(13xx)=f(132)*(N-i-r[i])。
注意这里的f(132)和上面的f(132)的不同之处在于统计的位置(红色)。
于是变成求f(132)。
132
=(132+312+321)-(312+321)
观察第1个括号:132 312 321
我们发现3的右边一定有一个2,然后1的位置随便放。
所以第1个括号为:∑(a[j]-1)(i<j且a[i]>a[j])
观察第2个括号:312 321
其实就是 3xx
所以第2个括号为:r[i]*(r[i]-1)/2
#include<cstdio> #include<cstdlib> #include<iostream> #include<fstream> #include<algorithm> #include<cstring> #include<string> #include<cmath> #include<queue> #include<stack> #include<map> #include<utility> #include<set> #include<bitset> #include<vector> #include<functional> #include<deque> #include<cctype> #include<climits> #include<complex> //#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL; typedef double DB; typedef pair<int,int> PII; typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a)) #define mmcy(a,b) memcpy(a,b,sizeof(a)) #define re(i,a,b) for(i=a;i<=b;i++) #define red(i,a,b) for(i=a;i>=b;i--) #define fi first #define se second #define m_p(a,b) make_pair(a,b) #define SF scanf #define PF printf #define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;} template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;} template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-9; inline int sgn(DB x){if(abs(x)<EPS)return 0;return(x>0)?1:-1;} const DB Pi=acos(-1.0); inline int gint() { int res=0;bool neg=0;char z; for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar()); if(z==EOF)return 0; if(z=='-'){neg=1;z=getchar();} for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar()); return (neg)?-res:res; } inline LL gll() { LL res=0;bool neg=0;char z; for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar()); if(z==EOF)return 0; if(z=='-'){neg=1;z=getchar();} for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar()); return (neg)?-res:res; } const int maxN=200000; const LL Mod=16777216; int N; int a[maxN+100]; LL l[maxN+100],r[maxN+100]; LL ans; LL tree[maxN+100]; #define lowbit(a) (a&(-a)) inline void update(int a,LL v){for(;a<=N;a+=lowbit(a))tree[a]=(tree[a]+v)%Mod;} inline LL ask(int a){LL res=0;for(;a>=1;a-=lowbit(a))res=(res+tree[a])%Mod;return res;} LL g[maxN+100]; /* f(1324)-f(1243)-f(1432) =f(1x2x)-f(1423)-f(12xx)+f(1234)-f(14xx)+f(1423) =f(1x2x)+f(1234)-f(12xx)-f(14xx) =f(1x2x)+f(1234)-[f(1xxx)-f(13xx)] =f(1x2x)+f(13xx)+f(1234)-f(1xxx) */ int main() { freopen("bzoj1145.in","r",stdin); freopen("bzoj1145.out","w",stdout); int i; N=gint(); re(i,1,N)a[i]=gint(); mmst(tree,0);re(i,1,N)l[i]=ask(a[i]-1),update(a[i],1); mmst(tree,0);red(i,N,1)r[i]=ask(a[i]-1),update(a[i],1); ans=0; //+f(1x2x) re(i,1,N)g[i]=(LL(l[i])*LL(l[i]-1)/2+LL(l[i])*LL(i-1-l[i]))%Mod; mmst(tree,0); re(i,1,N) { g[i]=(g[i]-ask(a[i]-1))%Mod; update(a[i],i-1); } re(i,1,N)ans=(ans+g[i]*LL(N-i-r[i]))%Mod; //+f(13xx) mmst(tree,0); red(i,N,1) { LL t=LL(N-i-r[i]); LL p=(ask(a[i]-1)-r[i]*(r[i]-1)/2)%Mod; ans=(ans+p*t)%Mod; update(a[i],a[i]-1); } //+f(1234) re(i,1,N)g[i]=l[i]; mmst(tree,0);re(i,1,N)update(a[i],g[i]),g[i]=ask(a[i]-1); mmst(tree,0);re(i,1,N)update(a[i],g[i]),g[i]=ask(a[i]-1); re(i,1,N)ans=(ans+g[i])%Mod; //-f(1xxx) re(i,1,N) { LL t=LL(N-i-r[i]); ans=(ans-t*(t-1)*(t-2)/6)%Mod; } ans=(ans%Mod+Mod)%Mod; cout<<ans<<endl; return 0; }