Codevs 2370 小机房的树 LCA 树上倍增

题目描述 Description

小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上。有一天,他们想爬到一个节点上去搞基,但是作为两只虫子,他们不想花费太多精力。已知从某个节点爬到其父亲节点要花费 c 的能量(从父亲节点爬到此节点也相同),他们想找出一条花费精力最短的路,以使得搞基的时候精力旺盛,他们找到你要你设计一个程序来找到这条路,要求你告诉他们最少需要花费多少精力

输入描述 Input Description

第一行一个n,接下来n-1行每一行有三个整数u, v, c 。表示节点 u 爬到节点 v 需要花费 c 的精力。
第n+1行有一个整数m表示有m次询问。接下来m行每一行有两个整数 u, v 表示两只虫子所在的节点

输出描述 Output Description

一共有m行,每一行一个整数,表示对于该次询问所得出的最短距离。

样例输入 Sample Input

3
1 0 1
2 0 1
3
1 0
2 0
1 2

样例输出 Sample Output

1
1
2

数据范围及提示 Data Size & Hint

1<=n<=500001<=m<=750000<=c<=1000

题解和代码

这道题显然是一道LCA的题目,我们可以跑一遍树上倍增。

#include <iostream>
#include <deque>
#include <vector>
#include <cmath>
using namespace std;
int n, m;
struct edge_type
{
    int u, v, c, nextu, nextv;
};
edge_type edge[50005];
const int root = 0;
int hu[50005], hv[50005], fa[50005], fac[50005], deep[50005], f[50005][30], maxdeep = 0, fsum[50005][30];
int maxi;
bool vis[50005];
vector<int> son[50005];
deque<int> q;
void bfs_build_tree(const int root)
{
    q.push_back(root);
    for (int i = 0; i <= n; ++i)
    {
        vis[i] = false;
    }
    vis[root] = true;
    deep[root] = 1;
    int now;
    while (!q.empty())
    {
        now = q.front();
        if (maxdeep < deep[now])
            maxdeep = deep[now];
        q.pop_front();
        int i = hu[now];
        while (i)
        {
            if (!vis[edge[i].v])
            {
                q.push_back(edge[i].v);
                vis[edge[i].v] = true;
                fa[edge[i].v] = now;
                fac[edge[i].v] = edge[i].c;
                son[now].push_back(edge[i].v);
                deep[edge[i].v] = deep[now] + 1;
            }
            i = edge[i].nextu;
        }
        i = hv[now];
        while (i)
        {
            if (!vis[edge[i].u])
            {
                q.push_back(edge[i].u);
                vis[edge[i].u] = true;
                fa[edge[i].u] = now;
                fac[edge[i].u] = edge[i].c;
                son[now].push_back(edge[i].u);
                deep[edge[i].u] = deep[now] + 1;
            }
            i = edge[i].nextv;
        }
    }
}
void get_f()
{
    maxi = log2(double(maxdeep)-0.5);
    for (int j = 0; j < n; ++j)
    {
        f[j][0] = fa[j];
        fsum[j][0] = fac[j];
        for (int i = 1; i <= 30; ++i)
            fsum[j][i] = f[j][i] = -1;
    }
    fsum[0][0] = f[0][0] = -1;
    for (int i = 1; i <= maxi; ++i)
        for (int j = 1; j < n; ++j)
            if ((1 << i) < deep[j])
            {
                f[j][i] = f[f[j][i-1]][i-1];
                fsum[j][i] = fsum[j][i-1] + fsum[f[j][i-1]][i-1];
            }
}
int g(int x, int y)
{
    int ret = 0, a = x, b = y;
    while (deep[b] > deep[a])
    {
        for (int i = maxi; i >= 0; --i)
            if (deep[f[b][i]] > deep[a])
            {
                ret += fsum[b][i];
                b = f[b][i];
            }
        if (deep[fa[b]] == deep[a])
        {
            ret += fac[b];
            b = fa[b];
        }
    }
    while (deep[a] > deep[b])
    {
        for (int i = maxi; i >= 0; --i)
            if (deep[f[a][i]] > deep[b])
            {
                ret += fsum[a][i];
                a = f[a][i];
            }
        if (deep[fa[a]] == deep[b])
        {
            ret += fac[a];
            a = fa[a];
        }
    }
    while (a != b)
    {
        for (int i = maxi; i >= 0; --i)
            if (f[a][i] != f[b][i])
            {
                ret += (fsum[a][i] + fsum[b][i]);
                a = f[a][i];
                b = f[b][i];
            }
        if (fa[a] == fa[b])
        {
            ret += (fac[a] + fac[b]);
            a = fa[a];
            b = fa[b];
        }
    }
    return ret;
}
int main()
{
    cin >> n;
    int u, v, c;
    for (int i = 1; i < n; ++i)
    {
        cin >> u >> v >> c;
        edge[i].u = u;
        edge[i].v = v;
        edge[i].c = c;
        edge[i].nextu = hu[u];
        edge[i].nextv = hv[v];
        hu[u] = i;
        hv[v] = i;
    }
    bfs_build_tree(root);
    get_f();
    cin >> m;
    int a, b;
    for (int i = 0; i < m; ++i)
    {
        cin >> a >> b;
        cout << g(a, b) << endl;
    }
}

posted on 2015-09-20 20:26  MagHSK  阅读(138)  评论(0编辑  收藏  举报