Exadata Storage Cell Offloading / Smart Scan
One of the main new features associated with Exadata systems is that I/O can be offloaded to storage servers rather than be done on the database server. Each of the storage servers may get a piece of the SQL statement to operate on, so the processing is also parallelized at the same time. This saves valuable database server processing cycles for other non-I/O related activities and can dramatically reduce response times. Smart Scan is another term that essentially means the same thing.
This feature is arguably the single most important part of the Exadata architecture and significantly reduces I/O bottlenecks. This is especially true in data warehouse or other larger database applications where significant amounts of data need to be moved from disk subsystems into the database server. Also, this I/O is offloaded to a storage server which is designed for this purpose.
There are several primary Smart Scan optimizations in Exadata for SQL statement processing:
- Column Projection - only return the data for columns that are contained in the SELECT list or required for joins.
- Predicate Filtering - return only the rows of interest to the database server. Since predicate information is sent to the Storage Server, it can filter the result sets before sending the data back to the database server. For example, in a standard database server, a query like "select count(1) from table1" will return all rows to the database server. In an offloading scenario, only the row count will be returned, thus saving extreme amounts of processing time for the database server, not to mention much less strain on the buffer cache.
- Storage Indexes - in-memory structures on the Storage Cell servers that holds min and max values for each MB of disk storage which limits the physical I/O that must be done. This is essentially a filtering process. By reading through these memory structures, the storage cell will understand which disk regions will or will not contain the data being requested. Think of this as something akin to partitioning for a table in the database server. For example, if the query "select count(1) from table1 where col1 > 0", the storage cell would use the storage indexes to know which portions of the disk it needs to read to satisfy the "col1 > 0" criteria. Also, and probably more importantly, the storage cell knows which portions of the disk it DOES NOT need to read.
- Function Offloading - SQL functions can be broken up into two main categories, single row and multi-row. Examples of single row functions include: SIN, COS, REPLACE, TRIM, TO_CHAR, TO_DATE, etc. Most of these functions can be offloaded to the storage cells. Examples of multi-row functions include AVG, COUNT, SUM, etc. None of the multi-row functions can be offloaded to the storage cells because they work on the entire result set which no one storage cell has. A view named V$SQLFN_METADATA includes more information about the specific functions that can/cannot be offloaded.
posted on 2013-03-19 00:47 Oracle和MySQL 阅读(225) 评论(0) 编辑 收藏 举报
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 字符编码:从基础到乱码解决