Codeforces 659F Polycarp and Hay 并查集
链接
题意
一个矩阵,减小一些数字的大小使得构成一个连通块的和恰好等于k,要求连通块中至少保持一个不变
思路
将数值从小到大排序,按顺序把与其相邻的加到并查集中。记录当前并查集中的个数,如果当前值能被K整除且总和超过了K,那么就可以以该点为中心输出了。
代码
#include <iostream>
#include <cstdio>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <map>
#include <set>
#include <cmath>
#include <cstring>
#include <string>
#define LL long long
#define INF 0x3f3f3f3f
#define eps 1e-8
using namespace std;
struct node{
int x, y;
LL val;
};
node b[1000005];
int father[1000005];
int a[1005][1005];
bool vis[1005][1005];
LL num[1000005];
const int step[4][2] = { 1, 0, 0, 1, -1, 0, 0, -1 };
int n, m;
int get_father(int x){
if (father[x] == x) return x;
return father[x] = get_father(father[x]);
}
bool compare(node a, node b){
return a.val > b.val;
}
void bfs(node u, LL k){
queue<node> Q;
int val = u.val;
u.val = 1;
Q.push(u);
memset(vis, 0, sizeof(vis));
vis[u.x][u.y] = true;
int tag = k / (LL)val;
int cnt = 1;
bool flag = false;
while (!Q.empty()){
u = Q.front(); Q.pop();
for (int i = 0; i < 4; ++i){
int x = u.x + step[i][0];
int y = u.y + step[i][1];
if (x < 1 || x > n || y < 1 || y > m || a[x][y] < val || vis[x][y] || cnt >= tag) continue;
node t = u;
t.x = x, t.y = y;
++cnt;
vis[x][y] = true;
if (cnt == tag){
flag = true;
break;
}
Q.push(t);
}
if (flag) break;
}
printf("YES\n");
for (int i = 1; i <= n; ++i){
for (int j = 1; j <= m; ++j){
if (vis[i][j]){
printf("%d ", val);
}
else{
printf("0 ");
}
}
printf("\n");
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
LL k;
while (~scanf("%d%d%I64d", &n, &m, &k)){
int t = 0;
for (int i = 1; i <= n; ++i){
for (int j = 1; j <= m; ++j){
scanf("%d", &a[i][j]);
b[t].y = j;
b[t].val = a[i][j];
++t;
}
}
for (int i = 0; i < n * m; ++i){
father[i] = i;
num[i] = 1;
}
sort(b, b + n * m, compare);
for (int i = 0; i < n * m; ++i){
int x, y;
int p = (b[i].x - 1) * m + b[i].y;
for (int j = 0; j < 4; ++j){
x = b[i].x + step[j][0];
y = b[i].y + step[j][1];
if (x < 1 || x > n || y < 1 || y > m || a[x][y] < b[i].val) continue;
int q = (x - 1) * m + y;
int xf = get_father(p), yf = get_father(q);
if (xf != yf){
father[xf] = yf;
num[yf] += num[xf];
num[xf] = 0;
}
}
int yf = get_father(p);
if (k % b[i].val == 0 && num[yf] * b[i].val >= k){
bfs(b[i], k);
return 0;
}
}
printf("NO\n");
}
}