LA 2531 The K-league 最大流

 

 

 

 

  1 #include <iostream>
  2 #include <cstdio>
  3 #include <fstream>
  4 #include <algorithm>
  5 #include <cmath>
  6 #include <deque>
  7 #include <vector>
  8 #include <queue>
  9 #include <string>
 10 #include <cstring>
 11 #include <map>
 12 #include <stack>
 13 #include <set>
 14 #define INF 0x3f3f3f3f
 15 #define OPEN_FILE
 16 #define MAXN 626
 17 using namespace std;
 18 
 19 int n;
 20 int win[MAXN], remain[MAXN][MAXN];
 21 struct Edge{
 22     int from, to, cap, flow;
 23     //Edge(int u, int v, int c, int f) :from(u), to(v), cap(c), flow(f){};
 24 };
 25 bool comp(const Edge& a, const Edge& b){
 26     return (a.from < b.from || (a.from == b.from && a.to < b.to));
 27 }
 28 struct Dinic{
 29     int n, m, i, s, t;
 30     Edge e;
 31     vector<Edge> edges;
 32     vector<int> G[MAXN];
 33     int d[MAXN], cur[MAXN];
 34     bool vis[MAXN];
 35     void init(int n){
 36         this->n = n;
 37         for (i = 0; i <= n; i++){
 38             G[i].clear();
 39         }
 40         edges.clear();
 41     }
 42     void AddEdge(int from, int to, int cap){
 43         edges.push_back(Edge{ from, to, cap, 0 });
 44         edges.push_back(Edge{ to, from, 0, 0 });
 45         m = edges.size();
 46         G[from].push_back(m - 2);
 47         G[to].push_back(m - 1);
 48     }
 49     bool BFS(){
 50         memset(vis, 0, sizeof(vis));
 51         queue<int> Q;
 52         Q.push(s);
 53         d[s] = 0;
 54         vis[s] = 1;
 55         while (!Q.empty()){
 56             int x = Q.front();
 57             Q.pop();
 58             for (i = 0; i < G[x].size(); i++){
 59                 Edge& e = edges[G[x][i]];
 60                 if (!vis[e.to] && e.cap > e.flow){
 61                     vis[e.to] = true;
 62                     d[e.to] = d[x] + 1;
 63                     Q.push(e.to);
 64                 }
 65             }
 66         }
 67         return vis[t];
 68     }
 69     int DFS(int x, int a){
 70         if (x == t || a == 0) return a;
 71         int flow = 0, f;
 72         for (int& i = cur[x]; i < G[x].size(); i++){
 73             Edge& e = edges[G[x][i]];
 74             if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0){
 75                 e.flow += f;
 76                 edges[G[x][i] ^ 1].flow -= f;
 77                 flow += f;
 78                 a -= f;
 79                 if (a == 0) break;
 80             }
 81         }
 82         return flow;
 83     }
 84     int MaxFlow(int s, int t, int need){
 85         int flow = 0;
 86         this->s = s;
 87         this->t = t;
 88         while (BFS()){
 89             memset(cur, 0, sizeof(cur));
 90             flow += DFS(s, INF);
 91             if (flow > need) return flow;
 92         }
 93         return flow;
 94     }
 95     bool checkFull(int s){
 96         for (int i = 0; i < G[s].size(); i++){
 97             if (edges[G[s][i]].flow != edges[G[s][i]].cap){
 98                 return false;
 99             }
100         }
101         return  true;
102     }
103 };
104 
105 int main()
106 {
107 #ifdef OPEN_FILE
108     freopen("in.txt", "r", stdin);
109     freopen("out.txt", "w", stdout);
110 #endif // OPEN_FILE
111     int T, x;
112     scanf("%d", &T);
113     for (int cas = 1; cas <= T; cas++){
114         scanf("%d", &n);
115         memset(win, 0, sizeof(win));
116         for (int i = 1; i <= n; i++){
117             scanf("%d%d", &win[i], &x);
118         }
119         memset(remain, 0, sizeof(remain));
120         int p = 0;
121         for (int i = 1; i <= n; i++){
122             for (int j = 1; j <= n; j++){
123                 scanf("%d", &x);
124                 if (i == j) continue;
125                 remain[i][0] += x;
126                 if (remain[i][j] == 0 && remain[j][i] == 0){
127                     remain[i][j] = x;
128                     ++p;
129                 }
130             }
131         }
132         int s = 0, t = n + p + 1, q;
133         bool flag, first;
134         Dinic ex;
135         first = false;
136         for (int k = 1; k <= n; k++){
137             ex.init(n * n);
138             flag = false;
139             q = 1;
140             int total = win[k] + remain[k][0];
141             for (int i = 1; i <= n; i++){
142                 for (int j = i + 1; j <= n; j++){
143                     if (!remain[i][j]) continue;
144                     ex.AddEdge(s, q, remain[i][j]);
145                     ex.AddEdge(q, p + i, INF);
146                     ex.AddEdge(q, p + j, INF);
147                     q++;
148                 }
149                 if (total - win[i] < 0) {
150                     flag = true;
151                     break;
152                 }
153                 ex.AddEdge(p + i, t, total - win[i]);
154             }
155             if (flag){
156                 continue;
157             }
158             ex.MaxFlow(s, t, INF);
159             if (ex.checkFull(0)){
160                 if (first){
161                     printf(" ");
162                 }
163                 printf("%d", k);
164                 first = true;
165             }
166         }
167         printf("\n");
168     }
169 }

 

posted on 2015-05-10 11:09  张济  阅读(199)  评论(0编辑  收藏  举报

导航