[转]Spark算子
本文提供的是0.7.3版本中的action和transformation接口,RDD提供了两种类型的操作:transformation和action
1. transformation是得到一个新的RDD,方式很多,比如从数据源生成一个新的RDD,从RDD生成一个新的RDD
2. action是得到一个值,或者一个结果(直接将RDD cache到内存中)
所有的transformation都是采用的懒策略,就是如果只是将transformation提交是不会执行计算的,计算只有在action被提交的时候才被触发。
下面介绍一下RDD的常见操作:(注意是dataset还是RDD)
transformation
1. map(func):对调用map的RDD数据集中的每个element都使用func,然后返回一个新的RDD,这个返回的数据集是分布式的数据集
2. filter(func) : 对调用filter的RDD数据集中的每个元素都使用func,然后返回一个包含使func为true的元素构成的RDD
3. flatMap(func):和map差不多,但是flatMap生成的是多个结果
4. mapPartitions(func):和map很像,但是map是每个element,而mapPartitions是每个partition
5. mapPartitionsWithSplit(func):和mapPartitions很像,但是func作用的是其中一个split上,所以func中应该有index
6. sample(withReplacement,faction,seed):抽样
7. union(otherDataset):返回一个新的dataset,包含源dataset和给定dataset的元素的集合
8. distinct([numTasks]):返回一个新的dataset,这个dataset含有的是源dataset中的distinct的element
9. groupByKey(numTasks):返回(K,Seq[V]),也就是hadoop中reduce函数接受的key-valuelist
10. reduceByKey(func,[numTasks]):就是用一个给定的reduce func再作用在groupByKey产生的(K,Seq[V]),比如求和,求平均数
11. sortByKey([ascending],[numTasks]):按照key来进行排序,是升序还是降序,ascending是boolean类型
12. join(otherDataset,[numTasks]):当有两个KV的dataset(K,V)和(K,W),返回的是(K,(V,W))的dataset,numTasks为并发的任务数
13. cogroup(otherDataset,[numTasks]):当有两个KV的dataset(K,V)和(K,W),返回的是(K,Seq[V],Seq[W])的dataset,numTasks为并发的任务数
14. cartesian(otherDataset):笛卡尔积就是m*n,大家懂的
action
1. reduce(func):说白了就是聚集,但是传入的函数是两个参数输入返回一个值,这个函数必须是满足交换律和结合律的
2. collect():一般在filter或者足够小的结果的时候,再用collect封装返回一个数组
3. count():返回的是dataset中的element的个数
4. first():返回的是dataset中的第一个元素
5. take(n):返回前n个elements,这个士driver program返回的
6. takeSample(withReplacement,num,seed):抽样返回一个dataset中的num个元素,随机种子seed
7. saveAsTextFile(path):把dataset写到一个text file中,或者hdfs,或者hdfs支持的文件系统中,spark把每条记录都转换为一行记录,然后写到file中
8. saveAsSequenceFile(path):只能用在key-value对上,然后生成SequenceFile写到本地或者hadoop文件系统
9. countByKey():返回的是key对应的个数的一个map,作用于一个RDD
10. foreach(func):对dataset中的每个元素都使用func