Dijkstra算法(Swift版)
原理
我们知道,使用Breadth-first search算法能够找到到达某个目标的最短路径,但这个算法没考虑weight
,因此我们再为每个edge添加了权重后,我们就需要使用Dijkstra算法来寻找权重和最小的路径。
其实原理很简单,我们最终的目的是计算出每一个节点到起点的权重之和,同时获取得到这个权重和的路径数组。
那么权重和最小的那个自然就是我们要的结果。
在该算法中有一下几个核心的思想:
- 当我们遍历到某个节点时,计算出该节点到起点的权重和之后=,该节点就不在使用了,或删除或者标记为已检阅
- 当该节点的某个neighbor节点加上权重的值小于该neighbor节点时,跟新该neighbor节点的数据
实现这个算法的方式有多种,在该文章中,我们把某些数据直接封装到了节点中。
Vertex
Vertex.swift
import Foundation
open class Vertex {
open var identifier: String
open var neighbors: [(Vertex, Double)] = []
open var pathLengthFromStart = Double.infinity
open var pathVerticesFromStart: [Vertex] = []
public init(identifier: String) {
self.identifier = identifier
}
open func clearCache() {
pathLengthFromStart = Double.infinity
pathVerticesFromStart = []
}
}
extension Vertex: Hashable {
open var hashValue: Int {
return identifier.hashValue
}
}
extension Vertex: Equatable {
public static func ==(lhs: Vertex, rhs: Vertex) -> Bool {
return lhs.hashValue == rhs.hashValue
}
}
Dijkstra
Dijkstra.swift
import Foundation
public class Dijkstra {
private var totalVertices: Set<Vertex>
public init(vertices: Set<Vertex>) {
totalVertices = vertices
}
private func clearCache() {
totalVertices.forEach { $0.clearCache() }
}
public func findShortestPaths(from startVertex: Vertex) {
clearCache()
var currentVertices = self.totalVertices
startVertex.pathLengthFromStart = 0
startVertex.pathVerticesFromStart.append(startVertex)
var currentVertex: Vertex? = startVertex
while let vertex = currentVertex {
currentVertices.remove(vertex)
let filteredNeighbors = vertex.neighbors.filter { currentVertices.contains($0.0) }
for neighbor in filteredNeighbors {
let neighborVertex = neighbor.0
let weight = neighbor.1
let theoreticNewWeight = vertex.pathLengthFromStart + weight
if theoreticNewWeight < neighborVertex.pathLengthFromStart {
neighborVertex.pathLengthFromStart = theoreticNewWeight
neighborVertex.pathVerticesFromStart = vertex.pathVerticesFromStart
neighborVertex.pathVerticesFromStart.append(neighborVertex)
}
}
if currentVertices.isEmpty {
currentVertex = nil
break
}
currentVertex = currentVertices.min { $0.pathLengthFromStart < $1.pathLengthFromStart }
}
}
}
演示
我们就演示这个例子
//: Playground - noun: a place where people can play
import Foundation
// last checked with Xcode 9.0b4
#if swift(>=4.0)
print("Hello, Swift 4!")
#endif
var vertices: Set<Vertex> = Set()
/// Create vertexs
var vertexA = Vertex(identifier: "A")
var vertexB = Vertex(identifier: "B")
var vertexC = Vertex(identifier: "C")
var vertexD = Vertex(identifier: "D")
var vertexE = Vertex(identifier: "E")
var vertexF = Vertex(identifier: "F")
/// Setting neighbors
vertexA.neighbors.append(contentsOf: [(vertexB, 5), (vertexD, 2)])
vertexB.neighbors.append(contentsOf: [(vertexC, 4), (vertexE, 2)])
vertexC.neighbors.append(contentsOf: [(vertexE, 6), (vertexF, 3)])
vertexD.neighbors.append(contentsOf: [(vertexB, 8), (vertexE, 7)])
vertexE.neighbors.append(contentsOf: [(vertexF, 1)])
vertices.insert(vertexA)
vertices.insert(vertexB)
vertices.insert(vertexC)
vertices.insert(vertexD)
vertices.insert(vertexE)
vertices.insert(vertexF)
let dijkstra = Dijkstra(vertices: vertices)
dijkstra.findShortestPaths(from: vertexA)
for vertex in vertices {
let paths = vertex.pathVerticesFromStart.map({ $0.identifier })
print("(A=>" + vertex.identifier + "): " + paths.joined(separator: " -> "))
}
打印结果:
(A=>B): A -> B
(A=>A): A
(A=>F): A -> B -> E -> F
(A=>C): A -> B -> C
(A=>D): A -> D
(A=>E): A -> B -> E
主要代码来自于Dijkstra