regulator-fixed and regulator-gpio
1、regulator-fixed
作用:创建一个固定的 regulator。一般是一个 GPIO 控制了一路电,只有开(enable) \ 关(disabled)两种操作。
device-tree node
io_vdd_en: regulator-JW5217DFND {
compatible = "regulator-fixed";
pinctrl-names = "default";
pinctrl-0 = <&io_vdd_en_pins_default>;
gpios = <&wkup_gpio0 69 GPIO_ACTIVE_HIGH>;
regulator-name = "jw5217dfnd";
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
regulator-always-on;
regulator-boot-on;
enable-active-high;
vin-supply = <&vsys_3v3>;
};
解析:
compatible = "regulator-fixed";
固定的 regulator。特点:不能控制电压,只能 enable 和 disabled,没设备用的时候自动关电(disabled)。相关代码如下:
// drivers/regulator/fixed.c
static const struct regulator_ops fixed_voltage_ops = {
};
static const struct regulator_ops fixed_voltage_clkenabled_ops = {
.enable = reg_clock_enable,
.disable = reg_clock_disable,
.is_enabled = reg_clock_is_enabled,
};
static const struct of_device_id fixed_of_match[] = {
{
.compatible = "regulator-fixed",
.data = &fixed_voltage_data,
},
{
.compatible = "regulator-fixed-clock",
.data = &fixed_clkenable_data,
},
{
},
};
static struct platform_driver regulator_fixed_voltage_driver = {
.probe = reg_fixed_voltage_probe,
.driver = {
.name = "reg-fixed-voltage",
.of_match_table = of_match_ptr(fixed_of_match),
},
};
static int reg_fixed_voltage_probe(struct platform_device *pdev)
{
struct fixed_voltage_data *drvdata;
drvdata = devm_kzalloc(&pdev->dev, sizeof(struct fixed_voltage_data),
GFP_KERNEL);
...
if (drvtype && drvtype->has_enable_clock) {
drvdata->desc.ops = &fixed_voltage_clkenabled_ops;
drvdata->enable_clock = devm_clk_get(dev, NULL);
if (IS_ERR(drvdata->enable_clock)) {
dev_err(dev, "Can't get enable-clock from devicetree\n");
return -ENOENT;
}
} else {
drvdata->desc.ops = &fixed_voltage_ops;
}
...
}
gpios = <&wkup_gpio0 69 GPIO_ACTIVE_HIGH>;
控制电的 GPIO。开电时(enabled)的将 GPIO 置为有效电平,关电时(disabled)置为无效电平。相关代码如下:
// drivers/regulator/fixed.c
static int reg_fixed_voltage_probe(struct platform_device *pdev)
{
...
cfg.ena_gpiod = gpiod_get_optional(&pdev->dev, NULL, gflags);
if (IS_ERR(cfg.ena_gpiod))
return PTR_ERR(cfg.ena_gpiod);
...
}
// drivers/regulator/core.c
reg_fixed_voltage_probe
-> devm_regulator_register
-> regulator_register
-> regulator_ena_gpio_request
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
const struct regulator_config *config)
{
struct regulator_enable_gpio *pin, *new_pin;
struct gpio_desc *gpiod;
gpiod = config->ena_gpiod;
new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
...
pin = new_pin;
pin->gpiod = gpiod;
rdev->ena_pin = pin;
...
}
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
regulator 最小及最大电压限制。对于 regulator-fixed 无实际意义。
regulator-always-on;
一直开电,防止因其他原因被关电,否则需要在其他驱动中获取此 regulator 来手动控制:regulator_enable() \ regulator_disable()。
当指定了此选项后,会有一个的虚拟设备一直在使用此 regulator,可通过如下命令查看到:
cat /sys/class/regulator/regulator.*/num_users # 查看有多少个设备在使用此 regulator
cat /sys/class/regulator/regulator.*/state # 查看此 regulator 的状态:enabled or disabled
regulator-boot-on;
开机时自动上电。注意:若一段时间内无设备在使用此 regulator,则会自动关电(猜测应该和系统低功耗有关),因此必须加上 regulator-always-on。
相关代码如下:
// drivers/regulator/of_regulator.c
reg_fixed_voltage_probe
-> of_get_fixed_voltage_config
-> of_get_regulator_init_data
-> of_get_regulation_constraints
static int of_get_regulation_constraints(struct device *dev,
struct device_node *np,
struct regulator_init_data **init_data,
const struct regulator_desc *desc)
{
struct regulation_constraints *constraints = &(*init_data)->constraints;
...
constraints->boot_on = of_property_read_bool(np, "regulator-boot-on");
constraints->always_on = of_property_read_bool(np, "regulator-always-on");
...
}
// drivers/regulator/core.c
reg_fixed_voltage_probe
-> devm_regulator_register
-> regulator_register
-> set_machine_constraints
static int set_machine_constraints(struct regulator_dev *rdev)
{
...
if (rdev->constraints->always_on || rdev->constraints->boot_on) {
/* If we want to enable this regulator, make sure that we know
* the supplying regulator.
*/
if (rdev->supply_name && !rdev->supply)
return -EPROBE_DEFER;
if (rdev->supply) {
ret = regulator_enable(rdev->supply);
if (ret < 0) {
_regulator_put(rdev->supply);
rdev->supply = NULL;
return ret;
}
}
ret = _regulator_do_enable(rdev);
if (ret < 0 && ret != -EINVAL) {
rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
return ret;
}
if (rdev->constraints->always_on)
rdev->use_count++;
}
...
}
// drivers/regulator/core.c
reg_fixed_voltage_probe
-> devm_regulator_register
-> regulator_register
-> set_machine_constraints
-> _regulator_do_enable
static int _regulator_do_enable(struct regulator_dev *rdev)
{
...
if (rdev->ena_pin) {
if (!rdev->ena_gpio_state) {
ret = regulator_ena_gpio_ctrl(rdev, true);
if (ret < 0)
return ret;
rdev->ena_gpio_state = 1;
}
} else if (rdev->desc->ops->enable) {
ret = rdev->desc->ops->enable(rdev);
if (ret < 0)
return ret;
} else {
return -EINVAL;
}
...
}
// drivers/regulator/core.c
reg_fixed_voltage_probe
-> devm_regulator_register
-> regulator_register
-> set_machine_constraints
-> _regulator_do_enable
-> regulator_ena_gpio_ctrl
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
struct regulator_enable_gpio *pin = rdev->ena_pin;
if (!pin)
return -EINVAL;
if (enable) {
/* Enable GPIO at initial use */
if (pin->enable_count == 0)
gpiod_set_value_cansleep(pin->gpiod, 1);
pin->enable_count++;
} else {
if (pin->enable_count > 1) {
pin->enable_count--;
return 0;
}
/* Disable GPIO if not used */
if (pin->enable_count <= 1) {
gpiod_set_value_cansleep(pin->gpiod, 0);
pin->enable_count = 0;
}
}
return 0;
}
自动关电的代码:
// drivers/regulator/core.c
regulator_init_complete_work_function
-> regulator_late_cleanup
-> _regulator_do_disable
-> regulator_ena_gpio_ctrl
-> gpiod_set_value_cansleep
static void regulator_init_complete_work_function(struct work_struct *work)
{
/*
* Regulators may had failed to resolve their input supplies
* when were registered, either because the input supply was
* not registered yet or because its parent device was not
* bound yet. So attempt to resolve the input supplies for
* pending regulators before trying to disable unused ones.
*/
class_for_each_device(®ulator_class, NULL, NULL,
regulator_register_resolve_supply);
/* If we have a full configuration then disable any regulators
* we have permission to change the status for and which are
* not in use or always_on. This is effectively the default
* for DT and ACPI as they have full constraints.
*/
class_for_each_device(®ulator_class, NULL, NULL,
regulator_late_cleanup);
}
static DECLARE_DELAYED_WORK(regulator_init_complete_work,
regulator_init_complete_work_function);
enable-active-high;
指定 enable GPIO 的有效电平为高(默认为低),仅适用于 regulator。在这里,GPIO 属性中的 GPIO_ACTIVE_xxx 不起作用(建议两者设置成一致,否则会有警告)。相关代码如下:
// drivers/gpio/gpiolib-of.c
static void of_gpio_flags_quirks(struct device_node *np,
const char *propname,
enum of_gpio_flags *flags,
int index)
{
/*
* Some GPIO fixed regulator quirks.
* Note that active low is the default.
*/
if (IS_ENABLED(CONFIG_REGULATOR) &&
(of_device_is_compatible(np, "regulator-fixed") ||
of_device_is_compatible(np, "reg-fixed-voltage") ||
(!(strcmp(propname, "enable-gpio") &&
strcmp(propname, "enable-gpios")) &&
of_device_is_compatible(np, "regulator-gpio")))) {
bool active_low = !of_property_read_bool(np,
"enable-active-high");
/*
* The regulator GPIO handles are specified such that the
* presence or absence of "enable-active-high" solely controls
* the polarity of the GPIO line. Any phandle flags must
* be actively ignored.
*/
if ((*flags & OF_GPIO_ACTIVE_LOW) && !active_low) {
pr_warn("%s GPIO handle specifies active low - ignored\n",
of_node_full_name(np));
*flags &= ~OF_GPIO_ACTIVE_LOW;
}
if (active_low)
*flags |= OF_GPIO_ACTIVE_LOW;
}
...
}
2、regulator-gpio
作用:创建一个由 GPIO 控制的 regulator。一般是 GPIO 控制输出多个不同的电压或电流(支持多个 GPIO),因此除了开(enable) \ 关(disabled)两种操作外,往往还支持电压或电流的控制。
device-tree node
vdd_sd_dv: regulator-TLV71033 {
compatible = "regulator-gpio";
pinctrl-names = "default";
pinctrl-0 = <&vdd_sd_dv_pins_default>;
regulator-name = "tlv71033";
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <3300000>;
regulator-type = voltage;
regulator-boot-on;
enable-active-high;
vin-supply = <&vsys_5v0>;
enable-gpios = <&wkup_gpio0 69 GPIO_ACTIVE_HIGH>;
gpios = <&main_gpio0 8 GPIO_ACTIVE_HIGH>;
gpios-states = <0>;
states = <1800000 0x0>, <3300000 0x1>;
};
解析:
compatible = "regulator-gpio";
GPIO regulator。特点:通过 GPIO 来控制电压或电流。相关代码如下:
// drivers/regulator/gpio-regulator.c
static const struct regulator_ops gpio_regulator_voltage_ops = {
.get_voltage = gpio_regulator_get_value,
.set_voltage = gpio_regulator_set_voltage,
.list_voltage = gpio_regulator_list_voltage,
};
static const struct regulator_ops gpio_regulator_current_ops = {
.get_current_limit = gpio_regulator_get_value,
.set_current_limit = gpio_regulator_set_current_limit,
};
static const struct of_device_id regulator_gpio_of_match[] = {
{ .compatible = "regulator-gpio", },
{},
};
static struct platform_driver gpio_regulator_driver = {
.probe = gpio_regulator_probe,
.driver = {
.name = "gpio-regulator",
.of_match_table = of_match_ptr(regulator_gpio_of_match),
},
};
static int gpio_regulator_probe(struct platform_device *pdev)
{
...
switch (config->type) {
case REGULATOR_VOLTAGE:
drvdata->desc.type = REGULATOR_VOLTAGE;
drvdata->desc.ops = &gpio_regulator_voltage_ops;
drvdata->desc.n_voltages = config->nr_states;
break;
case REGULATOR_CURRENT:
drvdata->desc.type = REGULATOR_CURRENT;
drvdata->desc.ops = &gpio_regulator_current_ops;
break;
default:
dev_err(dev, "No regulator type set\n");
return -EINVAL;
}
...
}
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <3300000>;
regulator 最小及最大电压限制。
regulator-type = voltage;
regulator 的类型,可选值:voltage(默认)、current。仅适用于 regulator-gpio。相关代码如下:
drivers/regulator/gpio-regulator.c
gpio_regulator_probe
-> of_get_gpio_regulator_config
static struct gpio_regulator_config *
of_get_gpio_regulator_config(struct device *dev, struct device_node *np,
const struct regulator_desc *desc)
{
...
config->type = REGULATOR_VOLTAGE;
ret = of_property_read_string(np, "regulator-type", ®type);
if (ret >= 0) {
if (!strncmp("voltage", regtype, 7))
config->type = REGULATOR_VOLTAGE;
else if (!strncmp("current", regtype, 7))
config->type = REGULATOR_CURRENT;
else
dev_warn(dev, "Unknown regulator-type '%s'\n",
regtype);
}
return config;
}
enable-gpios = <&wkup_gpio0 69 GPIO_ACTIVE_HIGH>;
与 regulator-fixed 不同,regulator-gpio 的 enabled 引脚由 enable-gpios 属性来指定,而不是 gpios 属性指定。
// drivers/regulator/gpio-regulator.c
static int gpio_regulator_probe(struct platform_device *pdev)
{
...
if (config->enabled_at_boot)
gflags = GPIOD_OUT_HIGH | GPIOD_FLAGS_BIT_NONEXCLUSIVE;
else
gflags = GPIOD_OUT_LOW | GPIOD_FLAGS_BIT_NONEXCLUSIVE;
cfg.ena_gpiod = gpiod_get_optional(dev, "enable", gflags);
if (IS_ERR(cfg.ena_gpiod))
return PTR_ERR(cfg.ena_gpiod);
...
}
gpios = <&main_gpio0 8 GPIO_ACTIVE_HIGH>;
用于控制控制输出多个不同的电压或电流的 GPIO。支持多个 GPIO。
gpios-states = <0>;
用于设置 GPIO (gpios)的默认输出电平,1 有效电平,0 无效电平(即设置 regulator 的默认输出电压或电流大小,保存在 gpio_regulator_data 结构体的 state 字段中)。gpios-states 属性中的元素和 gpios 属性中的元素一一对应。
相关代码如下:
// drivers/regulator/gpio-regulator.c
gpio_regulator_probe
-> of_get_gpio_regulator_config
static struct gpio_regulator_config *
of_get_gpio_regulator_config(struct device *dev, struct device_node *np,
const struct regulator_desc *desc)
{
struct gpio_regulator_config *config;
int ngpios;
config = devm_kzalloc(dev,
sizeof(struct gpio_regulator_config),
GFP_KERNEL);
...
ngpios = gpiod_count(dev, NULL);
if (ngpios > 0) {
config->gflags = devm_kzalloc(dev,
sizeof(enum gpiod_flags)
* ngpios,
GFP_KERNEL);
if (!config->gflags)
return ERR_PTR(-ENOMEM);
for (i = 0; i < ngpios; i++) {
u32 val;
ret = of_property_read_u32_index(np, "gpios-states", i,
&val);
/* Default to high per specification */
if (ret)
config->gflags[i] = GPIOD_OUT_HIGH;
else
config->gflags[i] =
val ? GPIOD_OUT_HIGH : GPIOD_OUT_LOW;
}
}
config->ngpios = ngpios;
...
}
// drivers/regulator/gpio-regulator.c
static int gpio_regulator_probe(struct platform_device *pdev)
{
struct gpio_regulator_data *drvdata;
drvdata = devm_kzalloc(dev, sizeof(struct gpio_regulator_data),
GFP_KERNEL);
if (drvdata == NULL)
return -ENOMEM;
if (np) {
config = of_get_gpio_regulator_config(dev, np,
&drvdata->desc);
if (IS_ERR(config))
return PTR_ERR(config);
}
...
drvdata->gpiods = devm_kzalloc(dev, sizeof(struct gpio_desc *),
GFP_KERNEL);
if (!drvdata->gpiods)
return -ENOMEM;
for (i = 0; i < config->ngpios; i++) {
drvdata->gpiods[i] = devm_gpiod_get_index(dev,
NULL,
i,
config->gflags[i]);
if (IS_ERR(drvdata->gpiods[i]))
return PTR_ERR(drvdata->gpiods[i]);
/* This is good to know */
gpiod_set_consumer_name(drvdata->gpiods[i], drvdata->desc.name);
}
drvdata->nr_gpios = config->ngpios;
...
state = 0;
for (ptr = 0; ptr < drvdata->nr_gpios; ptr++) {
if (config->gflags[ptr] == GPIOD_OUT_HIGH)
state |= (1 << ptr);
}
drvdata->state = state;
...
}
states = <1800000 0x0>, <3300000 0x1>;
此处就是 regulator-gpio 的核心。双数的元素代表电压或电流值,单数的元素代表所有 GPIO 的输出电平二进制组合编码后的值。相关代码如下:
// drivers/regulator/gpio-regulator.c
gpio_regulator_probe
-> of_get_gpio_regulator_config
static struct gpio_regulator_config *
of_get_gpio_regulator_config(struct device *dev, struct device_node *np,
const struct regulator_desc *desc)
{
...
proplen = of_property_count_u32_elems(np, "states");
if (proplen < 0) {
dev_err(dev, "No 'states' property found\n");
return ERR_PTR(-EINVAL);
}
config->states = devm_kcalloc(dev,
proplen / 2,
sizeof(struct gpio_regulator_state),
GFP_KERNEL);
if (!config->states)
return ERR_PTR(-ENOMEM);
for (i = 0; i < proplen / 2; i++) {
of_property_read_u32_index(np, "states", i * 2,
&config->states[i].value);
of_property_read_u32_index(np, "states", i * 2 + 1,
&config->states[i].gpios);
}
config->nr_states = i;
...
}
// drivers/regulator/gpio-regulator.c
static int gpio_regulator_probe(struct platform_device *pdev)
{
...
drvdata->states = devm_kmemdup(dev,
config->states,
config->nr_states *
sizeof(struct gpio_regulator_state),
GFP_KERNEL);
if (drvdata->states == NULL) {
dev_err(dev, "Failed to allocate state data\n");
return -ENOMEM;
}
drvdata->nr_states = config->nr_states;
...
}
获取及设置电压或电流的代码如下:
static int gpio_regulator_get_value(struct regulator_dev *dev)
{
struct gpio_regulator_data *data = rdev_get_drvdata(dev);
int ptr;
for (ptr = 0; ptr < data->nr_states; ptr++)
if (data->states[ptr].gpios == data->state)
return data->states[ptr].value;
return -EINVAL;
}
static int gpio_regulator_set_voltage(struct regulator_dev *dev,
int min_uV, int max_uV,
unsigned *selector)
{
struct gpio_regulator_data *data = rdev_get_drvdata(dev);
int ptr, target = 0, state, best_val = INT_MAX;
for (ptr = 0; ptr < data->nr_states; ptr++)
if (data->states[ptr].value < best_val &&
data->states[ptr].value >= min_uV &&
data->states[ptr].value <= max_uV) {
target = data->states[ptr].gpios;
best_val = data->states[ptr].value;
if (selector)
*selector = ptr;
}
if (best_val == INT_MAX)
return -EINVAL;
for (ptr = 0; ptr < data->nr_gpios; ptr++) {
state = (target & (1 << ptr)) >> ptr;
gpiod_set_value_cansleep(data->gpiods[ptr], state);
}
data->state = target;
return 0;
}
static int gpio_regulator_set_current_limit(struct regulator_dev *dev,
int min_uA, int max_uA)
{
struct gpio_regulator_data *data = rdev_get_drvdata(dev);
int ptr, target = 0, state, best_val = 0;
for (ptr = 0; ptr < data->nr_states; ptr++)
if (data->states[ptr].value > best_val &&
data->states[ptr].value >= min_uA &&
data->states[ptr].value <= max_uA) {
target = data->states[ptr].gpios;
best_val = data->states[ptr].value;
}
if (best_val == 0)
return -EINVAL;
for (ptr = 0; ptr < data->nr_gpios; ptr++) {
state = (target & (1 << ptr)) >> ptr;
gpiod_set_value_cansleep(data->gpiods[ptr], state);
}
data->state = target;
return 0;
}
根据以上代码可知设置电压或电流时,设置的是一个范围值,而不是具体值。
代码处理逻辑:
1、遍历所有状态(device-tree node 中的 states 属性),找到符合要求的最好值(对于电压就是符合要求的最小电压值;对于电流就是符合要求的最大电流值),保存最好的电压或电流值及 GPIO 输出电平编码值。
2、根据编码值设置所有 GPIO 的输出电平。GPIO 的顺序和二进制顺序一致,比如第 1 个 GPIO 对应第 1 位。