python iris 数据集

from sklearn.datasets import load_iris
iris = load_iris()
print(iris.keys())
n_samples, n_features = iris.data.shape
print((n_samples, n_features))
print(iris.data[0])
print(iris.target.shape)
print(iris.target)
print(iris.target_names)
print("feature_names:",iris.feature_names)

sklearn中的iris数据集有5个key:

  • [‘target_names’, ‘data’, ‘target’, ‘DESCR’, ‘feature_names’] 
    • target_names : 分类名称 
      • [‘setosa’ ‘versicolor’ ‘virginica’]
    • target:分类(150个) 
      • (150L,)
      • [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
        1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 
        2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
        2 2]
    • feature_names: 特征名称 
      • (‘feature_names:’, [‘sepal length (cm)’, ‘sepal width (cm)’, ‘petal length (cm)’, ‘petal width (cm)’])
    • data : 特征值 
      • (150L, 4L)
      • data[0]:[ 5.1 3.5 1.4 0.2]

 

posted on 2018-06-12 21:19  小学森也要学编程  阅读(859)  评论(0编辑  收藏  举报