【转】动态规划之01背包问题

首先是问题描述:给定n种物品和一背包,物品i的重量是wi,其价值是pi,背包的容量是M,问如何选择装入背包中的物品总价值最大?
 
可以这样理解:背包的背负有上限,因此在这个上限内尽可能多的装东西,并且价值越多越好。
在这里我之想讨论动态规划解决这个问题的详细过程。
 

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。因为背包的最终最大容量未知,所以,我们得从1到M一个一个的试,比如,刚开始任选N件物品中的一个,看对应的M的背包,能不能放进去,如果能放进去,并且还有多少空间,则,多出来的空间能放N-1物品中的最大价值,怎么能保证总选则是最大价值呢,看下表:
测试数据:

10,3
3,4
4,5
5,6

动态规划之01背包问题
 

c[i][j]数组保存了1,2,3号物品依次选择后的最大价值.

这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.

从以上最大价值的构造过程中可以看出。

f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.

下面是一种实现过程:(C语言描述)

 

#include<stdio.h>
int c[10][100];
int knapsack(int m,int n)
{
    int i,j,w[10],p[10];
    for(i=1;i<n+1;i++)
    scanf("\n%d,%d",&w[i],&p[i]);
    for(i=0;i<10;i++)
    for(j=0;j<100;j++)
    c[i][j]=0;
    for(i=1;i<n+1;i++)
    for(j=1;j<m+1;j++)
    {
        if(w[i]<=j){
             if(p[i]+c[i-1][j-w[i]]>c[i-1][j])
                 c[i][j]=p[i]+c[i-1][j-w[i]]
             else
                 c[i][j]=c[i-1][j];
        }else 

             c[i][j]=c[i-1][j];
     }
     return(c[n][m]);
}
int main()
{
    int m,n;int i,j;

    printf("input the max capacity and the number of the goods:\n");
    scanf("%d,%d",&m,&n);
    printf("Input each one(weight and value):\n");
    printf("%d",knapsack(m,n));
    printf("\n");
    for(i=0;i<10;i++)
        for(j=0;j<15;j++)
        {
             printf("%d ",c[i][j]);
             if(j==14)printf("\n");
        }
    system("pause");
}

 

下面是思路的基本过程

问题的特点是:每种物品一件,可以选择放1或不放0。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

这个方程非常重要,据说基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以详细的查了一下这个方程的含义:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

在有的地方看到的背包问题题目中,有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

小结

01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故仔细体会上面基本思路的得出方法,状态转移方程的意

posted @ 2013-10-09 18:58  ps龙之吻  阅读(614)  评论(0编辑  收藏  举报