通过前面有章调试方法概述的简单介绍,kprobe其实就是将某个要检测的指令备份,再替换成int3(x86)或者未定义指令(arm)来触发异常,再调用对应体系的异常处理函数来执行我们自定义的hook,执行完我们自定义的hook,再将备份的指令放回原来的位置继续往下执行,下面我们就来看下linux内核版本为5.17.5的arm64的kprobe代码架构,首先看下probe这个结构体
struct kprobe { struct hlist_node hlist; /* list of kprobes for multi-handler support */ struct list_head list; /*count the number of times this probe was temporarily disarmed */ unsigned long nmissed; /* location of the probe point */ kprobe_opcode_t *addr; /* Allow user to indicate symbol name of the probe point */ const char *symbol_name; /* Offset into the symbol */ unsigned int offset; /* Called before addr is executed. */ kprobe_pre_handler_t pre_handler; /* Called after addr is executed, unless... */ kprobe_post_handler_t post_handler; /* Saved opcode (which has been replaced with breakpoint) */ kprobe_opcode_t opcode; /* copy of the original instruction */ struct arch_specific_insn ainsn; /* * Indicates various status flags. * Protected by kprobe_mutex after this kprobe is registered. */ u32 flags; };
替换成未定义指令后,就会触发的未定义指令异常处理函数
void do_undefinstr(struct pt_regs *regs) { /* check for AArch32 breakpoint instructions */ if (!aarch32_break_handler(regs)) return; if (call_undef_hook(regs) == 0) return; BUG_ON(!user_mode(regs)); force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); }
里面的会调用call_undef_hook,这个函数的参数就是记录在堆栈中的寄存器组,下面一个函数我们也可以看到用到了程序计数器pc
static int call_undef_hook(struct pt_regs *regs) { struct undef_hook *hook; unsigned long flags; u32 instr; int (*fn)(struct pt_regs *regs, u32 instr) = NULL; unsigned long pc = instruction_pointer(regs); if (!user_mode(regs)) { __le32 instr_le; if (get_kernel_nofault(instr_le, (__le32 *)pc)) goto exit; instr = le32_to_cpu(instr_le); } else if (compat_thumb_mode(regs)) { /* 16-bit Thumb instruction */ __le16 instr_le; if (get_user(instr_le, (__le16 __user *)pc)) goto exit; instr = le16_to_cpu(instr_le); if (aarch32_insn_is_wide(instr)) { u32 instr2; if (get_user(instr_le, (__le16 __user *)(pc + 2))) goto exit; instr2 = le16_to_cpu(instr_le); instr = (instr << 16) | instr2; } } else { /* 32-bit ARM instruction */ __le32 instr_le; if (get_user(instr_le, (__le32 __user *)pc)) goto exit; instr = le32_to_cpu(instr_le); } raw_spin_lock_irqsave(&undef_lock, flags); list_for_each_entry(hook, &undef_hook, node) if ((instr & hook->instr_mask) == hook->instr_val && (regs->pstate & hook->pstate_mask) == hook->pstate_val) fn = hook->fn; raw_spin_unlock_irqrestore(&undef_lock, flags); exit: return fn ? fn(regs, instr) : 1; }
从最后几行我们看到他会便利整个undef_hook,通过对比instr_mask等找到对应的undef_hook的fn:其实也就是 kprobe_trap_handler
在系统初始化kprobe子系统时
static int __init init_kprobes(void) { int i, err = 0; /* FIXME allocate the probe table, currently defined statically */ /* initialize all list heads */ for (i = 0; i < KPROBE_TABLE_SIZE; i++) INIT_HLIST_HEAD(&kprobe_table[i]); err = populate_kprobe_blacklist(__start_kprobe_blacklist, __stop_kprobe_blacklist); if (err) pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err); if (kretprobe_blacklist_size) { /* lookup the function address from its name */ for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { kretprobe_blacklist[i].addr = kprobe_lookup_name(kretprobe_blacklist[i].name, 0); if (!kretprobe_blacklist[i].addr) pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n", kretprobe_blacklist[i].name); } } /* By default, kprobes are armed */ kprobes_all_disarmed = false; #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) /* Init 'kprobe_optinsn_slots' for allocation */ kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; #endif err = arch_init_kprobes(); if (!err) err = register_die_notifier(&kprobe_exceptions_nb); if (!err) err = register_module_notifier(&kprobe_module_nb); kprobes_initialized = (err == 0); kprobe_sysctls_init(); return err; } early_initcall(init_kprobes);
会调用arch_init_kprobes来注册体系架构的kprobe的hook
static struct undef_hook kprobes_arm_break_hook = { .instr_mask = 0x0fffffff, .instr_val = KPROBE_ARM_BREAKPOINT_INSTRUCTION, .cpsr_mask = MODE_MASK, .cpsr_val = SVC_MODE, .fn = kprobe_trap_handler, }; #endif /* !CONFIG_THUMB2_KERNEL */ int __init arch_init_kprobes(void) { arm_probes_decode_init(); #ifdef CONFIG_THUMB2_KERNEL register_undef_hook(&kprobes_thumb16_break_hook); register_undef_hook(&kprobes_thumb32_break_hook); #else register_undef_hook(&kprobes_arm_break_hook); #endif return 0; }
kprobe_trap_handler会调用kprobe_handler
void __kprobes kprobe_handler(struct pt_regs *regs) { struct kprobe *p, *cur; struct kprobe_ctlblk *kcb; kcb = get_kprobe_ctlblk(); cur = kprobe_running(); #ifdef CONFIG_THUMB2_KERNEL /* * First look for a probe which was registered using an address with * bit 0 set, this is the usual situation for pointers to Thumb code. * If not found, fallback to looking for one with bit 0 clear. */ p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1)); if (!p) p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc); #else /* ! CONFIG_THUMB2_KERNEL */ p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc); #endif if (p) { if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) { /* * Probe hit but conditional execution check failed, * so just skip the instruction and continue as if * nothing had happened. * In this case, we can skip recursing check too. */ singlestep_skip(p, regs); } else if (cur) { /* Kprobe is pending, so we're recursing. */ switch (kcb->kprobe_status) { case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: case KPROBE_HIT_SS: /* A pre- or post-handler probe got us here. */ kprobes_inc_nmissed_count(p); save_previous_kprobe(kcb); set_current_kprobe(p); kcb->kprobe_status = KPROBE_REENTER; singlestep(p, regs, kcb); restore_previous_kprobe(kcb); break; case KPROBE_REENTER: /* A nested probe was hit in FIQ, it is a BUG */ pr_warn("Failed to recover from reentered kprobes.\n"); dump_kprobe(p); fallthrough; default: /* impossible cases */ BUG(); } } else { /* Probe hit and conditional execution check ok. */ set_current_kprobe(p); kcb->kprobe_status = KPROBE_HIT_ACTIVE; /* * If we have no pre-handler or it returned 0, we * continue with normal processing. If we have a * pre-handler and it returned non-zero, it will * modify the execution path and no need to single * stepping. Let's just reset current kprobe and exit. */ if (!p->pre_handler || !p->pre_handler(p, regs)) { kcb->kprobe_status = KPROBE_HIT_SS; singlestep(p, regs, kcb); if (p->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; p->post_handler(p, regs, 0); } } reset_current_kprobe(); } } else { /* * The probe was removed and a race is in progress. * There is nothing we can do about it. Let's restart * the instruction. By the time we can restart, the * real instruction will be there. */ } }
上面这个函数我们可以看到,会调用kprobe的pre_handler和post_handler,这两个函数被我们实现好,装填进kprobe,并用register_kprobe注册到kprobe子系统;当注册好之后,系统执行到这个位置就会陷入异常,异常处理函数就会来处理我们的kprobe
int register_kprobe(struct kprobe *p) { int ret; struct kprobe *old_p; struct module *probed_mod; kprobe_opcode_t *addr; /* Adjust probe address from symbol */ addr = kprobe_addr(p); if (IS_ERR(addr)) return PTR_ERR(addr); p->addr = addr; ret = warn_kprobe_rereg(p); if (ret) return ret; /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ p->flags &= KPROBE_FLAG_DISABLED; p->nmissed = 0; INIT_LIST_HEAD(&p->list); ret = check_kprobe_address_safe(p, &probed_mod); if (ret) return ret; mutex_lock(&kprobe_mutex); old_p = get_kprobe(p->addr); if (old_p) { /* Since this may unoptimize 'old_p', locking 'text_mutex'. */ ret = register_aggr_kprobe(old_p, p); goto out; } cpus_read_lock(); /* Prevent text modification */ mutex_lock(&text_mutex); ret = prepare_kprobe(p); mutex_unlock(&text_mutex); cpus_read_unlock(); if (ret) goto out; INIT_HLIST_NODE(&p->hlist); hlist_add_head_rcu(&p->hlist, &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); if (!kprobes_all_disarmed && !kprobe_disabled(p)) { ret = arm_kprobe(p); if (ret) { hlist_del_rcu(&p->hlist); synchronize_rcu(); goto out; } } /* Try to optimize kprobe */ try_to_optimize_kprobe(p); out: mutex_unlock(&kprobe_mutex); if (probed_mod) module_put(probed_mod); return ret; }