堆排序
template<typename Item>
class MaxHeap{
private:
Item *data;
int count;
int capacity;
void shiftUp(int k){
while( k > 1 && data[k/2] < data[k] ){
swap( data[k/2], data[k] );
k /= 2;
}
}
public:
MaxHeap(int capacity){
data = new Item[capacity+1];
count = 0;
this->capacity = capacity;
}
~MaxHeap(){
delete[] data;
}
int size(){
return count;
}
bool isEmpty(){
return count == 0;
}
//添加新元素
void insert(Item item){
assert( count + 1 <= capacity );
data[count+1] = item;
count ++;
shiftUp(count);
}
public:
void testPrint(){
if( size() >= 100 ){
cout<<"Fancy print can only work for less than 100 int";
return;
}
if( typeid(Item) != typeid(int) ){
cout <<"Fancy print can only work for int item";
return;
}
cout<<"The Heap size is: "<<size()<<endl;
cout<<"data in heap: ";
for( int i = 1 ; i <= size() ; i ++ )
cout<<data[i]<<" ";
cout<<endl;
cout<<endl;
int n = size();
int max_level = 0;
int number_per_level = 1;
while( n > 0 ) {
max_level += 1;
n -= number_per_level;
number_per_level *= 2;
}
int max_level_number = int(pow(2, max_level-1));
int cur_tree_max_level_number = max_level_number;
int index = 1;
for( int level = 0 ; level < max_level ; level ++ ){
string line1 = string(max_level_number*3-1, ' ');
int cur_level_number = min(count-int(pow(2,level))+1,int(pow(2,level)));
bool isLeft = true;
for( int index_cur_level = 0 ; index_cur_level < cur_level_number ; index ++ , index_cur_level ++ ){
putNumberInLine( data[index] , line1 , index_cur_level , cur_tree_max_level_number*3-1 , isLeft );
isLeft = !isLeft;
}
cout<<line1<<endl;
if( level == max_level - 1 )
break;
string line2 = string(max_level_number*3-1, ' ');
for( int index_cur_level = 0 ; index_cur_level < cur_level_number ; index_cur_level ++ )
putBranchInLine( line2 , index_cur_level , cur_tree_max_level_number*3-1 );
cout<<line2<<endl;
cur_tree_max_level_number /= 2;
}
}
private:
void putNumberInLine( int num, string &line, int index_cur_level, int cur_tree_width, bool isLeft){
int sub_tree_width = (cur_tree_width - 1) / 2;
int offset = index_cur_level * (cur_tree_width+1) + sub_tree_width;
assert(offset + 1 < line.size());
if( num >= 10 ) {
line[offset + 0] = '0' + num / 10;
line[offset + 1] = '0' + num % 10;
}
else{
if( isLeft)
line[offset + 0] = '0' + num;
else
line[offset + 1] = '0' + num;
}
}
void putBranchInLine( string &line, int index_cur_level, int cur_tree_width){
int sub_tree_width = (cur_tree_width - 1) / 2;
int sub_sub_tree_width = (sub_tree_width - 1) / 2;
int offset_left = index_cur_level * (cur_tree_width+1) + sub_sub_tree_width;
assert( offset_left + 1 < line.size() );
int offset_right = index_cur_level * (cur_tree_width+1) + sub_tree_width + 1 + sub_sub_tree_width;
assert( offset_right < line.size() );
line[offset_left + 1] = '/';
line[offset_right + 0] = '\\';
}
};
public:
//获取优先级最高的节点 Item extractMax(){ assert( count > 0 ); Item ret = data[1]; swap( data[1] , data[count] ); count --; shiftDown(1); return ret; } Item getMax(){ assert( count > 0 ); return data[1]; }
private
void shiftDown(int k){
while( 2*k <= count ){
int j = 2*k; // 在此轮循环中,data[k]和data[j]交换位置
if( j+1 <= count && data[j+1] > data[j] )
j ++;
// data[j] 是 data[2*k]和data[2*k+1]中的最大值
if( data[k] >= data[j] ) break;
swap( data[k] , data[j] );
k = j;
}
}
//测试
int main() {
MaxHeap<int> maxheap = MaxHeap<int>(100);
srand(time(NULL));
for( int i = 0 ; i < 63 ; i ++ ){
maxheap.insert( rand()%100 );
}
while( !maxheap.isEmpty() )
cout<<maxheap.extractMax()<<" ";
cout<<endl;
return 0;
}
堆排序:
template<typename T>
void heapSort2(T arr[], int n){
MaxHeap<T> maxheap = MaxHeap<T>(arr,n);
for( int i = n-1 ; i >= 0 ; i-- )
arr[i] = maxheap.extractMax();
}
测试:
int main() {
int n = 1000000;
// 测试1 一般性测试
cout<<"Test for Random Array, size = "<<n<<", random range [0, "<<n<<"]"<<endl;
int* arr1 = SortTestHelper::generateRandomArray(n,0,n);
int* arr2 = SortTestHelper::copyIntArray(arr1, n);
int* arr3 = SortTestHelper::copyIntArray(arr1, n);
int* arr4 = SortTestHelper::copyIntArray(arr1, n);
int* arr5 = SortTestHelper::copyIntArray(arr1, n);
SortTestHelper::testSort("Merge Sort", mergeSort, arr1, n);
SortTestHelper::testSort("Quick Sort", quickSort, arr2, n);
SortTestHelper::testSort("Quick Sort 3 Ways", quickSort3Ways, arr3, n);
SortTestHelper::testSort("Heap Sort 1", heapSort1, arr4, n);
SortTestHelper::testSort("Heap Sort 2", heapSort2, arr5, n);
delete[] arr1;
delete[] arr2;
delete[] arr3;
delete[] arr4;
delete[] arr5;
cout<<endl;
// 测试2 测试近乎有序的数组
int swapTimes = 100;
cout<<"Test for Random Nearly Ordered Array, size = "<<n<<", swap time = "<<swapTimes<<endl;
arr1 = SortTestHelper::generateNearlyOrderedArray(n,swapTimes);
arr2 = SortTestHelper::copyIntArray(arr1, n);
arr3 = SortTestHelper::copyIntArray(arr1, n);
arr4 = SortTestHelper::copyIntArray(arr1, n);
arr5 = SortTestHelper::copyIntArray(arr1, n);
SortTestHelper::testSort("Merge Sort", mergeSort, arr1, n);
SortTestHelper::testSort("Quick Sort", quickSort, arr2, n);
SortTestHelper::testSort("Quick Sort 3 Ways", quickSort3Ways, arr3, n);
SortTestHelper::testSort("Heap Sort 1", heapSort1, arr4, n);
SortTestHelper::testSort("Heap Sort 2", heapSort2, arr5, n);
delete[] arr1;
delete[] arr2;
delete[] arr3;
delete[] arr4;
delete[] arr5;
cout<<endl;
// 测试3 测试存在包含大量相同元素的数组
cout<<"Test for Random Array, size = "<<n<<", random range [0,10]"<<endl;
arr1 = SortTestHelper::generateRandomArray(n,0,10);
arr2 = SortTestHelper::copyIntArray(arr1, n);
arr3 = SortTestHelper::copyIntArray(arr1, n);
arr4 = SortTestHelper::copyIntArray(arr1, n);
arr5 = SortTestHelper::copyIntArray(arr1, n);
SortTestHelper::testSort("Merge Sort", mergeSort, arr1, n);
SortTestHelper::testSort("Quick Sort", quickSort, arr2, n);
SortTestHelper::testSort("Quick Sort 3 Ways", quickSort3Ways, arr3, n);
SortTestHelper::testSort("Heap Sort 1", heapSort1, arr4, n);
SortTestHelper::testSort("Heap Sort 2", heapSort2, arr5, n);
delete[] arr1;
delete[] arr2;
delete[] arr3;
delete[] arr4;
delete[] arr5;
return 0;
}
改进:
public:
MaxHeap(int capacity){
data = new Item[capacity+1];
count = 0;
this->capacity = capacity;
}
MaxHeap(Item arr[], int n){
data = new Item[n+1];
capacity = n;
for( int i = 0 ; i < n ; i ++ )
data[i+1] = arr[i];
count = n;
for( int i = count/2 ; i >= 1 ; i -- )
shiftDown(i);
}
template<typename T>
void heapSort2(T arr[], int n){
MaxHeap<T> maxheap = MaxHeap<T>(arr,n);
for( int i = n-1 ; i >= 0 ; i-- )
arr[i] = maxheap.extractMax();
}