JUC
class ThreadDemo implements Runnable {
private volatile boolean flag = false;
@Override
public void run() {
try {
Thread.sleep(200);
} catch (InterruptedException e) {
}
flag = true;
System.out.println("flag=" + isFlag());
}
}
/*
* 一、volatile 关键字:当多个线程进行操作共享数据时,可以保证内存中的数据可见。
* 相较于 synchronized 是一种较为轻量级的同步策略。
*
* 注意:
* 1. volatile 不具备“互斥性”
* 2. volatile 不能保证变量的“原子性”
*/
public class TestVolatile {
public static void main(String[] args) {
ThreadDemo td = new ThreadDemo();
new Thread(td).start();
while(true){
if(td.isFlag()){
System.out.println("------------------");
break;
}
}
}
}
/*
* 一、i++ 的原子性问题:i++ 的操作实际上分为三个步骤“读-改-写”
* int i = 10;
* i = i++; //10
*
* int temp = i;
* i = i + 1;
* i = temp;
*
* 二、原子变量:在 java.util.concurrent.atomic 包下提供了一些原子变量。
* 1. volatile 保证内存可见性
* 2. CAS(Compare-And-Swap) 算法保证数据变量的原子性
* CAS 算法是硬件对于并发操作的支持
* CAS 包含了三个操作数:
* ①内存值 V
* ②预估值 A
* ③更新值 B
* 当且仅当 V == A 时, V = B; 否则,不会执行任何操作。
*/
public class TestAtomicDemo {
public static void main(String[] args) {
AtomicDemo ad = new AtomicDemo();
for (int i = 0; i < 100; i++) {
new Thread(ad).start();
}
}
}
class AtomicDemo implements Runnable{
private int serialNumber = 0;
@Override
public void run() {
try {
Thread.sleep(200);
} catch (InterruptedException e) {
}
System.out.println(Thread.currentThread() + ":" + getSerialNumber());
}
public int getSerialNumber(){
return serialNumber++;
}
}
class AtomicDemo implements Runnable{
private AtomicInteger serialNumber = new AtomicInteger(0);
@Override
public void run() {
try {
Thread.sleep(200);
} catch (InterruptedException e) {
}
System.out.println(getSerialNumber());
}
public int getSerialNumber(){
return serialNumber.getAndIncrement();
}
}
/*
* 模拟 CAS 算法
*/
public class TestCompareAndSwap {
public static void main(String[] args) {
final CompareAndSwap cas = new CompareAndSwap();
for (int i = 0; i < 10; i++) {
new Thread(new Runnable() {
@Override
public void run() {
int expectedValue = cas.get();
boolean b = cas.compareAndSet(expectedValue, (int)(Math.random() * 101));
System.out.println(b);
}
}).start();
}
}
}
class CompareAndSwap{
private int value;
//获取内存值
public synchronized int get(){
return value;
}
//比较
public synchronized int compareAndSwap(int expectedValue, int newValue){
int oldValue = value;
if(oldValue == expectedValue){
this.value = newValue;
}
return oldValue;
}
//设置
public synchronized boolean compareAndSet(int expectedValue, int newValue){
return expectedValue == compareAndSwap(expectedValue, newValue);
}
}
class HelloThread implements Runnable{
private static List<String> list = Collections.synchronizedList(new ArrayList<String>());
static{
list.add("AA");
list.add("BB");
list.add("CC");
}
@Override
public void run() {
java.util.Iterator<String> it = list.iterator();
while(it.hasNext()){
System.out.println(it.next());
list.add("AA");
}
}
}
//java.util.ConcurrentModificationException
CopyOnWriteArrayList/CopyOnWriteArraySet : “写入并复制”
添加操作多时,效率低,因为每次添加时都会进行复制,开销非常的大。并发迭代操作多时可以选择。
class HelloThread implements Runnable{
private static CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<>();
static{
list.add("AA");
list.add("BB");
list.add("CC");
}
@Override
public void run() {
java.util.Iterator<String> it = list.iterator();
while(it.hasNext()){
System.out.println(it.next());
list.add("DD");
}
}
}
public class TestCopyOnWriteArrayList {
public static void main(String[] args) {
HelloThread ht = new HelloThread();
for (int i = 0; i < 10; i++) {
new Thread(ht).start();
}
}
}
CountDownLatch :闭锁,在完成某些运算是,只有其他所有线程的运算全部完成,当前运算才继续执行
class LatchDemo implements Runnable {
private CountDownLatch latch;
public LatchDemo(CountDownLatch latch) {
this.latch = latch;
}
@Override
public void run() {
try {
for (int i = 0; i < 50000; i++) {
if (i % 2 == 0) {
System.out.println(i);
}
}
} finally {
latch.countDown();
}
}
}
public class TestCountDownLatch {
public static void main(String[] args) {
final CountDownLatch latch = new CountDownLatch(50);
LatchDemo ld = new LatchDemo(latch);
long start = System.currentTimeMillis();
for (int i = 0; i < 50; i++) {
new Thread(ld).start();
}
try {
latch.await();
} catch (InterruptedException e) {
}
long end = System.currentTimeMillis();
System.out.println("耗费时间为:" + (end - start));
}
}
创建执行线程的方式三:实现 Callable 接口。 相较于实现 Runnable 接口的方式,方法可以有返回值,并且可以抛出异常。
执行 Callable 方式,需要 FutureTask 实现类的支持,用于接收运算结果。 FutureTask 是 Future 接口的实现类
class ThreadDemo implements Callable<Integer>{
@Override
public Integer call() throws Exception {
int sum = 0;
for (int i = 0; i <= 100000; i++) {
sum += i;
}
return sum;
}
}
public class TestCallable {
public static void main(String[] args) {
ThreadDemo td = new ThreadDemo();
//1.执行 Callable 方式,需要 FutureTask 实现类的支持,用于接收运算结果。
FutureTask<Integer> result = new FutureTask<>(td);
new Thread(result).start();
//2.接收线程运算后的结果
try {
Integer sum = result.get(); //FutureTask 可用于 闭锁
System.out.println(sum);
System.out.println("------------------------------------");
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}
}
}
用于解决多线程安全问题的方式:
1.、同步代码块
2、同步方法
3、同步锁 Lock(jdk 1.5 后),是一个显示锁,需要通过 lock() 方法上锁,必须通过 unlock() 方法进行释放锁
class Ticket implements Runnable{
private int tick = 100;
private Lock lock = new ReentrantLock();
@Override
public void run() {
while(true){
lock.lock(); //上锁
try{
if(tick > 0){
try {
Thread.sleep(200);
} catch (InterruptedException e) {
}
System.out.println(Thread.currentThread().getName() + " 完成售票,余票为:" + --tick);
}
}finally{
lock.unlock(); //释放锁
}
}
}
}
public static void main(String[] args) {
Ticket ticket = new Ticket();
new Thread(ticket, "1号窗口").start();
new Thread(ticket, "2号窗口").start();
new Thread(ticket, "3号窗口").start();
}
//店员
class Clerk{
private int product = 0;
//进货
public synchronized void get(){//循环次数:0
while(product >= 1){//为了避免虚假唤醒问题,应该总是使用在循环中
System.out.println("产品已满!");
try {
this.wait();
} catch (InterruptedException e) {
}
}
System.out.println(Thread.currentThread().getName() + " : " + ++product);
this.notifyAll();
}
//卖货
public synchronized void sale(){//product = 0; 循环次数:0
while(product <= 0){
System.out.println("缺货!");
try {
this.wait();
} catch (InterruptedException e) {
}
}
System.out.println(Thread.currentThread().getName() + " : " + --product);
this.notifyAll();
}
}
//生产者
class Productor implements Runnable{
private Clerk clerk;
public Productor(Clerk clerk) {
this.clerk = clerk;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
try {
Thread.sleep(200);
} catch (InterruptedException e) {
}
clerk.get();
}
}
}
//消费者
class Consumer implements Runnable{
private Clerk clerk;
public Consumer(Clerk clerk) {
this.clerk = clerk;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
clerk.sale();
}
}
}
public static void main(String[] args) {
Clerk clerk = new Clerk();
Productor pro = new Productor(clerk);
Consumer cus = new Consumer(clerk);
new Thread(pro, "生产者 A").start();
new Thread(cus, "消费者 B").start();
new Thread(pro, "生产者 C").start();
new Thread(cus, "消费者 D").start();
}
class Clerk {
private int product = 0;
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
// 进货
public void get() {
lock.lock();
try {
if (product >= 1) { // 为了避免虚假唤醒,应该总是使用在循环中。
System.out.println("产品已满!");
try {
condition.await();
} catch (InterruptedException e) {
}
}
System.out.println(Thread.currentThread().getName() + " : "
+ ++product);
condition.signalAll();
} finally {
lock.unlock();
}
}
// 卖货
public void sale() {
lock.lock();
try {
if (product <= 0) {
System.out.println("缺货!");
try {
condition.await();
} catch (InterruptedException e) {
}
}
System.out.println(Thread.currentThread().getName() + " : "
+ --product);
condition.signalAll();
} finally {
lock.unlock();
}
}
}
// 生产者
class Productor implements Runnable {
private Clerk clerk;
public Productor(Clerk clerk) {
this.clerk = clerk;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
clerk.get();
}
}
}
// 消费者
class Consumer implements Runnable {
private Clerk clerk;
public Consumer(Clerk clerk) {
this.clerk = clerk;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
clerk.sale();
}
}
}
class AlternateDemo{
private int number = 1; //当前正在执行线程的标记
private Lock lock = new ReentrantLock();
private Condition condition1 = lock.newCondition();
private Condition condition2 = lock.newCondition();
private Condition condition3 = lock.newCondition();
/**
* @param totalLoop : 循环第几轮
*/
public void loopA(int totalLoop){
lock.lock();
try {
//1. 判断
if(number != 1){
condition1.await();
}
//2. 打印
for (int i = 1; i <= 1; i++) {
System.out.println(Thread.currentThread().getName() + "\t" + i + "\t" + totalLoop);
}
//3. 唤醒
number = 2;
condition2.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void loopB(int totalLoop){
lock.lock();
try {
//1. 判断
if(number != 2){
condition2.await();
}
//2. 打印
for (int i = 1; i <= 1; i++) {
System.out.println(Thread.currentThread().getName() + "\t" + i + "\t" + totalLoop);
}
//3. 唤醒
number = 3;
condition3.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void loopC(int totalLoop){
lock.lock();
try {
//1. 判断
if(number != 3){
condition3.await();
}
//2. 打印
for (int i = 1; i <= 1; i++) {
System.out.println(Thread.currentThread().getName() + "\t" + i + "\t" + totalLoop);
}
//3. 唤醒
number = 1;
condition1.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
public static void main(String[] args) {
AlternateDemo ad = new AlternateDemo();
new Thread(new Runnable() {
@Override
public void run() {
for (int i = 1; i <= 20; i++) {
ad.loopA(i);
}
}
}, "A").start();
new Thread(new Runnable() {
@Override
public void run() {
for (int i = 1; i <= 20; i++) {
ad.loopB(i);
}
}
}, "B").start();
new Thread(new Runnable() {
@Override
public void run() {
for (int i = 1; i <= 20; i++) {
ad.loopC(i);
System.out.println("-----------------------------------");
}
}
}, "C").start();
}
/*
* 1. ReadWriteLock : 读写锁
*
* 写写/读写 需要“互斥”
* 读读 不需要互斥
*
*/
public class TestReadWriteLock {
public static void main(String[] args) {
ReadWriteLockDemo rw = new ReadWriteLockDemo();
new Thread(new Runnable() {
@Override
public void run() {
rw.set((int)(Math.random() * 101));
}
}, "Write:").start();
for (int i = 0; i < 100; i++) {
new Thread(new Runnable() {
@Override
public void run() {
rw.get();
}
}).start();
}
}
}
class ReadWriteLockDemo{
private int number = 0;
private ReadWriteLock lock = new ReentrantReadWriteLock();
//读
public void get(){
lock.readLock().lock(); //上锁
try{
System.out.println(Thread.currentThread().getName() + " : " + number);
}finally{
lock.readLock().unlock(); //释放锁
}
}
//写
public void set(int number){
lock.writeLock().lock();
try{
System.out.println(Thread.currentThread().getName());
this.number = number;
}finally{
lock.writeLock().unlock();
}
}
}
/*
* 1. ReadWriteLock : 读写锁
*
* 写写/读写 需要“互斥”
* 读读 不需要互斥
*
*/
public class TestReadWriteLock {
public static void main(String[] args) {
ReadWriteLockDemo rw = new ReadWriteLockDemo();
new Thread(new Runnable() {
@Override
public void run() {
rw.set((int)(Math.random() * 101));
}
}, "Write:").start();
for (int i = 0; i < 100; i++) {
new Thread(new Runnable() {
@Override
public void run() {
rw.get();
}
}).start();
}
}
}
/*
* 题目:判断打印的 "one" or "two" ?
*
* 1. 两个普通同步方法,两个线程,标准打印, 打印? //one two
* 2. 新增 Thread.sleep() 给 getOne() ,打印? //one two
* 3. 新增普通方法 getThree() , 打印? //three one two
* 4. 两个普通同步方法,两个 Number 对象,打印? //two one
* 5. 修改 getOne() 为静态同步方法,打印? //two one
* 6. 修改两个方法均为静态同步方法,一个 Number 对象? //one two
* 7. 一个静态同步方法,一个非静态同步方法,两个 Number 对象? //two one
* 8. 两个静态同步方法,两个 Number 对象? //one two
*
* 线程八锁的关键:
* ①非静态方法的锁默认为 this, 静态方法的锁为 对应的 Class 实例
* ②某一个时刻内,只能有一个线程持有锁,无论几个方法。
*/
public class TestThread8Monitor {
public static void main(String[] args) {
Number number = new Number();
Number number2 = new Number();
new Thread(new Runnable() {
@Override
public void run() {
number.getOne();
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
// number.getTwo();
number2.getTwo();
}
}).start();
/*new Thread(new Runnable() {
@Override
public void run() {
number.getThree();
}
}).start();*/
}
}
class Number{
public static synchronized void getOne(){//Number.class
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
}
System.out.println("one");
}
public synchronized void getTwo(){//this
System.out.println("two");
}
public void getThree(){
System.out.println("three");
}
}
一、线程池:提供了一个线程队列,队列中保存着所有等待状态的线程。避免了创建与销毁额外开销,提高了响应的速度。
二、线程池的体系结构:
java.util.concurrent.Executor : 负责线程的使用与调度的根接口
|--**ExecutorService 子接口: 线程池的主要接口
|--ThreadPoolExecutor 线程池的实现类
|--ScheduledExecutorService 子接口:负责线程的调度
|--ScheduledThreadPoolExecutor :继承 ThreadPoolExecutor, 实现 ScheduledExecutorService
工具类 : Executors
ExecutorService newFixedThreadPool() : 创建固定大小的线程池
ExecutorService newCachedThreadPool() : 缓存线程池,线程池的数量不固定,可以根据需求自动的更改数量。
ExecutorService newSingleThreadExecutor() : 创建单个线程池。线程池中只有一个线程
ScheduledExecutorService newScheduledThreadPool() : 创建固定大小的线程,可以延迟或定时的执行任务。
public class TestThreadPool { public static void main(String[] args) throws Exception { //1. 创建线程池 ExecutorService pool = Executors.newFixedThreadPool(5); List<Future<Integer>> list = new ArrayList<>(); for (int i = 0; i < 10; i++) { Future<Integer> future = pool.submit(new Callable<Integer>(){ @Override public Integer call() throws Exception { int sum = 0; for (int i = 0; i <= 100; i++) { sum += i; } return sum; } }); list.add(future); } pool.shutdown(); for (Future<Integer> future : list) { System.out.println(future.get()); } /*ThreadPoolDemo tpd = new ThreadPoolDemo(); //2. 为线程池中的线程分配任务 for (int i = 0; i < 10; i++) { pool.submit(tpd); } //3. 关闭线程池 pool.shutdown();*/ } // new Thread(tpd).start(); // new Thread(tpd).start(); } class ThreadPoolDemo implements Runnable{ private int i = 0; @Override public void run() { while(i <= 100){ System.out.println(Thread.currentThread().getName() + " : " + i++); } } }
public static void main(String[] args) throws Exception { ScheduledExecutorService pool = Executors.newScheduledThreadPool(5); for (int i = 0; i < 5; i++) { Future<Integer> result = pool.schedule(new Callable<Integer>(){ @Override public Integer call() throws Exception { int num = new Random().nextInt(100);//生成随机数 System.out.println(Thread.currentThread().getName() + " : " + num); return num; } }, 1, TimeUnit.SECONDS); System.out.println(result.get()); } pool.shutdown(); }
public class TestForkJoinPool { public static void main(String[] args) { Instant start = Instant.now(); ForkJoinPool pool = new ForkJoinPool(); ForkJoinTask<Long> task = new ForkJoinSumCalculate(0L, 50000000000L); Long sum = pool.invoke(task); System.out.println(sum); Instant end = Instant.now(); System.out.println("耗费时间为:" + Duration.between(start, end).toMillis());//166-1996-10590 } @Test public void test1(){ Instant start = Instant.now(); long sum = 0L; for (long i = 0L; i <= 50000000000L; i++) { sum += i; } System.out.println(sum); Instant end = Instant.now(); System.out.println("耗费时间为:" + Duration.between(start, end).toMillis());//35-3142-15704 } //java8 新特性 @Test public void test2(){ Instant start = Instant.now(); Long sum = LongStream.rangeClosed(0L, 50000000000L) .parallel() .reduce(0L, Long::sum); System.out.println(sum); Instant end = Instant.now(); System.out.println("耗费时间为:" + Duration.between(start, end).toMillis());//1536-8118 } } class ForkJoinSumCalculate extends RecursiveTask<Long>{ /** * */ private static final long serialVersionUID = -259195479995561737L; private long start; private long end; private static final long THURSHOLD = 10000L; //临界值 public ForkJoinSumCalculate(long start, long end) { this.start = start; this.end = end; } @Override protected Long compute() { long length = end - start; if(length <= THURSHOLD){ long sum = 0L; for (long i = start; i <= end; i++) { sum += i; } return sum; }else{ long middle = (start + end) / 2; ForkJoinSumCalculate left = new ForkJoinSumCalculate(start, middle); left.fork(); //进行拆分,同时压入线程队列 ForkJoinSumCalculate right = new ForkJoinSumCalculate(middle+1, end); right.fork(); // return left.join() + right.join(); } } }