单机模式下使用分布式缓存求矩阵乘积

使用分布式缓存有两点需要注意,这是今天折腾了一天的体会。

1)利用DistributedCache类添加缓存文件的语句要紧紧跟在Configuration实例之后

1         Configuration conf=new Configuration();
2         DistributedCache.addCacheFile(new URI(cachePath),conf);//添加分布式缓存
3         FileSystem fs=FileSystem.get(URI.create(cachePath),conf);
4         System.out.println(fs.getUri().toString());
5         fs.delete(new Path(outUri),true);
6         conf.set("rightMatrixNum","5");
7         conf.set("u","5");
8         Job job=new Job(conf,"MultiMatrix");
9         //DistributedCache.addCacheFile(new URI(cachePath),conf);//添加分布式缓存    

原先添加在第9行,运行一直报“空引用”的错,将 DistributedCache.addCacheFile(new URI(cachePath),conf);添加到第2行,紧跟在conf之后,就OK了(不过要满足以下第2点)

2)第2点就是使用分布式缓存的自定义mapper/reducer类必须定义为内部类。

3)当满足以上两点之后,程序中就可以正常的使用分布式缓存了,不过运行又会遇到一个问题,“FileNotFoundException....”后面就是缓存文件的路径,程序找不到缓存的文件,MR程序中读取文件时,默认FileSystem是hdfs,也就是从集群上读取,但是这些缓存文件恰恰是放在数据节点本地文件系统中的,所以程序中当然会“找不到文件”,解决方法很简单,在使用DistributedCache.getLocalCacheFiles()得到路径的基础上,在其前面追加字符串”file://“就可以了,如下所示(第6行)(http://hugh-wangp.iteye.com/blog/1468989) 

 1 public void setup(Context context) throws IOException {
 2             Configuration conf=context.getConfiguration();
 3             System.out.println("map setup() start!");
 4             //URI[] cacheFiles=DistributedCache.getCacheFiles(context.getConfiguration());
 5             Path[] cacheFiles=DistributedCache.getLocalCacheFiles(conf);
 6            String localCacheFile="file://"+cacheFiles[0].toString();      
 7             System.out.println("local path is:"+cacheFiles[0].toString());
 8             // URI[] cacheFiles=DistributedCache.getCacheFiles(context.getConfiguration());
 9             FileSystem fs =FileSystem.get(URI.create(localCacheFile), conf);
10             SequenceFile.Reader reader=null;
11             reader=new SequenceFile.Reader(fs,new Path(localCacheFile),conf);
12             IntWritable key= (IntWritable)ReflectionUtils.newInstance(reader.getKeyClass(),conf);
13             DoubleArrayWritable value= (DoubleArrayWritable)ReflectionUtils.newInstance(reader.getValueClass(),conf);
14             int valueLength=Array.getLength(value.toArray());
15             while (reader.next(key,value)){
16                 obValue=value.toArray();
17                 leftMatrix[key.get()]=new double[valueLength];
18                 for (int i=0;i<valueLength;++i){
19                     leftMatrix[key.get()][i]=Double.parseDouble(Array.get(obValue, i).toString());
20                 }
21 
22             }
23         }

 将“data/F100”作为缓存文件,然后在setup()函数中读取这个缓存文件,将其值存入double[][]leftMatrix二维数组中,也就是存储了左矩阵,这就涉及到一个问题,leftMatrix是MyMapper类的成员变量,应该是在其构造函数中完成初始化,这就需要得到矩阵的行数和列数,而获得行数和列数的方法目前我知道的就只有通过conf.setInt(“leftColumn”,100),conf.getInt("leftColumn",100)得到,但是前提是获得context,然后context.getConfiguration().getInt(...),也就是说MyMapper的构造函数需要以Context context作为参数,那就写一个嘛,然后运行,不成功。说明在MR框架在创建MyMapper对象的时候,使用的应该是一个无参的构造函数。所以最终只能是在声明成员变量leftMatrix的时候直接初始化。然后乘“data/input/b100”中的b100矩阵,以下就是完整的代码:

 

  1 /**
  2  * Created with IntelliJ IDEA.
  3  * User: hadoop
  4  * Date: 16-3-6
  5  * Time: 下午12:47
  6  * To change this template use File | Settings | File Templates.
  7  */
  8 import org.apache.hadoop.conf.Configuration;
  9 import org.apache.hadoop.fs.FileSystem;
 10 import java.io.IOException;
 11 import java.lang.reflect.Array;
 12 import java.net.URI;
 13 
 14 import org.apache.hadoop.fs.Path;
 15 import org.apache.hadoop.io.*;
 16 import org.apache.hadoop.mapreduce.InputSplit;
 17 import org.apache.hadoop.mapreduce.Job;
 18 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 19 import org.apache.hadoop.mapreduce.lib.input.FileSplit;
 20 import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
 21 import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
 22 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 23 import org.apache.hadoop.mapreduce.Reducer;
 24 import org.apache.hadoop.mapreduce.Mapper;
 25 import org.apache.hadoop.filecache.DistributedCache;
 26 import org.apache.hadoop.util.ReflectionUtils;
 27 
 28 public class MutiDoubleInputMatrixProduct {
 29     public static void main(String[]args) throws IOException, ClassNotFoundException, InterruptedException {
 30         String uri="data/input/b100";
 31         String outUri="sOutput";
 32         String cachePath="data/F100";
 33         Configuration conf=new Configuration();
 34         DistributedCache.addCacheFile(URI.create(cachePath),conf);//添加分布式缓存
 35         FileSystem fs=FileSystem.get(URI.create(uri),conf);
 36         fs.delete(new Path(outUri),true);
 37         conf.setInt("leftMatrixColumnNum",100);
 38         conf.setFloat("u",0.5f);
 39         Job job=new Job(conf,"MultiMatrix");
 40         //DistributedCache.addCacheFile(URI.create(cachePath),conf);//添加分布式缓存
 41         //DistributedCache.addLocalFiles(conf,cachePath);
 42 
 43         job.setJarByClass(MutiDoubleInputMatrixProduct.class);
 44         job.setInputFormatClass(SequenceFileInputFormat.class);
 45         job.setOutputFormatClass(SequenceFileOutputFormat.class);
 46         job.setMapperClass(MyMapper.class);
 47         job.setReducerClass(MyReducer.class);
 48         job.setMapOutputKeyClass(IntWritable.class);
 49         job.setMapOutputValueClass(DoubleArrayWritable.class);
 50         job.setOutputKeyClass(IntWritable.class);
 51         job.setOutputValueClass(DoubleArrayWritable.class);
 52         FileInputFormat.setInputPaths(job, new Path(uri));
 53         FileOutputFormat.setOutputPath(job,new Path(outUri));
 54         System.exit(job.waitForCompletion(true)?0:1);
 55     }
 56   public static  class MyMapper extends Mapper<IntWritable,DoubleArrayWritable,IntWritable,DoubleArrayWritable>{
 57         public DoubleArrayWritable map_value=new DoubleArrayWritable();
 58         public  double[][] leftMatrix=new double[100][100];/******************************************/
 59         public Object obValue=null;
 60         public DoubleWritable[] arraySum=null;
 61         public double sum=0;
 62         public void setup(Context context) throws IOException {
 63             Configuration conf=context.getConfiguration();
 64             System.out.println("map setup() start!");
 65             //URI[] cacheFiles=DistributedCache.getCacheFiles(context.getConfiguration());
 66             Path[] cacheFiles=DistributedCache.getLocalCacheFiles(conf);
 67             String localCacheFile="file://"+cacheFiles[0].toString();
 68             //URI[] cacheFiles=DistributedCache.getCacheFiles(conf);
 69             //DistributedCache.
 70             System.out.println("local path is:"+cacheFiles[0].toString());
 71             // URI[] cacheFiles=DistributedCache.getCacheFiles(context.getConfiguration());
 72             FileSystem fs =FileSystem.get(URI.create(localCacheFile), conf);
 73             SequenceFile.Reader reader=null;
 74             reader=new SequenceFile.Reader(fs,new Path(localCacheFile),conf);
 75             IntWritable key= (IntWritable)ReflectionUtils.newInstance(reader.getKeyClass(),conf);
 76             DoubleArrayWritable value= (DoubleArrayWritable)ReflectionUtils.newInstance(reader.getValueClass(),conf);
 77             int valueLength=0;
 78             while (reader.next(key,value)){
 79                 obValue=value.toArray();
 80                 if(key.get()<1){
 81                 valueLength=Array.getLength(obValue);
 82                 }
 83                 //leftMatrix=new double[valueLength][Integer.parseInt(context.getConfiguration().get("leftMatrixColumnNum"))];
 84                 for (int i=0;i<valueLength;++i){
 85                     leftMatrix[key.get()][i]=Double.parseDouble(Array.get(obValue, i).toString());
 86                 }
 87 
 88             }
 89         }
 90         public void map(IntWritable key,DoubleArrayWritable value,Context context) throws IOException, InterruptedException {
 91             obValue=value.toArray();
 92             InputSplit inputSplit=context.getInputSplit();
 93             String fileName=((FileSplit)inputSplit).getPath().getName();
 94             if (fileName.startsWith("FB")) {
 95                 context.write(key,value);
 96             }
 97             else{
 98                 arraySum=new DoubleWritable[leftMatrix.length];
 99                 for (int i=0;i<leftMatrix.length;++i){
100                     sum=0;
101                     for (int j=0;j<leftMatrix[0].length;++j){
102                         sum+= leftMatrix[i][j]*Double.parseDouble(Array.get(obValue,j).toString())*(double)(context.getConfiguration().getFloat("u",1f));
103                     }
104                     arraySum[i]=new DoubleWritable(sum);
105                     //arraySum[i].set(sum);
106                 }
107                 map_value.set(arraySum);
108                 context.write(key,map_value);
109             }
110         }
111     }
112   public static class MyReducer extends Reducer<IntWritable,DoubleArrayWritable,IntWritable,DoubleArrayWritable>{
113         public DoubleWritable[] sum=null;
114         public Object obValue=null;
115         public DoubleArrayWritable valueArrayWritable=null;
116 
117         public void setup(Context context){
118             int leftMatrixColumnNum=context.getConfiguration().getInt("leftMatrixColumnNum",100);
119             sum=new DoubleWritable[leftMatrixColumnNum];
120             for (int i=0;i<leftMatrixColumnNum;++i){
121                 sum[i]=new DoubleWritable(0.0);
122             }
123         }
124 
125         public void reduce(IntWritable key,Iterable<DoubleArrayWritable>value,Context context) throws IOException, InterruptedException {
126             int valueLength=0;
127             for(DoubleArrayWritable doubleValue:value){
128                 obValue=doubleValue.toArray();
129                 valueLength=Array.getLength(obValue);
130                 for (int i=0;i<valueLength;++i){
131                     sum[i]=new DoubleWritable(Double.parseDouble(Array.get(obValue,i).toString())+sum[i].get());
132                 }
133             }
134             valueArrayWritable=new DoubleArrayWritable();
135             valueArrayWritable.set(sum);
136             context.write(key,valueArrayWritable);
137             for (int i=0;i<sum.length;++i){
138                 sum[i].set(0.0);
139             }
140 
141         }
142     }
143 }
144 class DoubleArrayWritable extends ArrayWritable {
145     public DoubleArrayWritable(){
146         super(DoubleWritable.class);
147     }
148     /*
149     public String toString(){
150         StringBuilder sb=new StringBuilder();
151         for (Writable val:get()){
152             DoubleWritable doubleWritable=(DoubleWritable)val;
153             sb.append(doubleWritable.get());
154             sb.append(",");
155         }
156         sb.deleteCharAt(sb.length()-1);
157         return sb.toString();
158     }
159     */
160 }

 如果在声明成员变量leftMatrix的时候没有初始化,而是采用83行的方式初始化,那么在setup()函数中完成了leftMatrix的初始化,一切正常,但是当程序执行到map()函数中的时候,leftMatrix中的元素又变成了全0,最后的结果自然就全是0,原因是什么??原因是少了第87行代码(http://www.cnblogs.com/lz3018/p/5252814.html)。最新版本如下:

 

  1 /**
  2  * Created with IntelliJ IDEA.
  3  * User: hadoop
  4  * Date: 16-3-6
  5  * Time: 下午12:47
  6  * To change this template use File | Settings | File Templates.
  7  */
  8 import org.apache.hadoop.conf.Configuration;
  9 import org.apache.hadoop.fs.FileSystem;
 10 import java.io.IOException;
 11 import java.lang.reflect.Array;
 12 import java.net.URI;
 13 
 14 import org.apache.hadoop.fs.Path;
 15 import org.apache.hadoop.io.*;
 16 import org.apache.hadoop.mapreduce.InputSplit;
 17 import org.apache.hadoop.mapreduce.Job;
 18 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 19 import org.apache.hadoop.mapreduce.lib.input.FileSplit;
 20 import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
 21 import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
 22 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 23 import org.apache.hadoop.mapreduce.Reducer;
 24 import org.apache.hadoop.mapreduce.Mapper;
 25 import org.apache.hadoop.filecache.DistributedCache;
 26 import org.apache.hadoop.util.ReflectionUtils;
 27 
 28 public class MutiDoubleInputMatrixProduct {
 29     public static void main(String[]args) throws IOException, ClassNotFoundException, InterruptedException {
 30         String uri="data/input/b100";
 31         String outUri="sOutput";
 32         String cachePath="data/F100";
 33         Configuration conf=new Configuration();
 34         DistributedCache.addCacheFile(URI.create(cachePath),conf);//添加分布式缓存
 35         FileSystem fs=FileSystem.get(URI.create(uri),conf);
 36         fs.delete(new Path(outUri),true);
 37         conf.setInt("leftMatrixColumnNum",100);
 38         conf.setInt("leftMatrixRowNum",100);
 39         conf.setFloat("u",0.5f);
 40         Job job=new Job(conf,"MultiMatrix");
 41         //DistributedCache.addCacheFile(URI.create(cachePath),conf);//添加分布式缓存
 42         //DistributedCache.addLocalFiles(conf,cachePath);
 43 
 44         job.setJarByClass(MutiDoubleInputMatrixProduct.class);
 45         job.setInputFormatClass(SequenceFileInputFormat.class);
 46         job.setOutputFormatClass(SequenceFileOutputFormat.class);
 47         job.setMapperClass(MyMapper.class);
 48         job.setReducerClass(MyReducer.class);
 49         job.setMapOutputKeyClass(IntWritable.class);
 50         job.setMapOutputValueClass(DoubleArrayWritable.class);
 51         job.setOutputKeyClass(IntWritable.class);
 52         job.setOutputValueClass(DoubleArrayWritable.class);
 53         FileInputFormat.setInputPaths(job, new Path(uri));
 54         FileOutputFormat.setOutputPath(job,new Path(outUri));
 55         System.exit(job.waitForCompletion(true)?0:1);
 56     }
 57   public static  class MyMapper extends Mapper<IntWritable,DoubleArrayWritable,IntWritable,DoubleArrayWritable>{
 58         public DoubleArrayWritable map_value=new DoubleArrayWritable();
 59         public  double[][] leftMatrix=null;/******************************************/
 60         public Object obValue=null;
 61         public DoubleWritable[] arraySum=null;
 62         public double sum=0;
 63         public void setup(Context context) throws IOException {
 64             Configuration conf=context.getConfiguration();
 65             leftMatrix=new double[conf.getInt("leftMatrixRowNum",10)][conf.getInt("leftMatrixColumnNum",10)];
 66             System.out.println("map setup() start!");
 67             //URI[] cacheFiles=DistributedCache.getCacheFiles(context.getConfiguration());
 68             Path[] cacheFiles=DistributedCache.getLocalCacheFiles(conf);
 69             String localCacheFile="file://"+cacheFiles[0].toString();
 70             //URI[] cacheFiles=DistributedCache.getCacheFiles(conf);
 71             //DistributedCache.
 72             System.out.println("local path is:"+cacheFiles[0].toString());
 73             // URI[] cacheFiles=DistributedCache.getCacheFiles(context.getConfiguration());
 74             FileSystem fs =FileSystem.get(URI.create(localCacheFile), conf);
 75             SequenceFile.Reader reader=null;
 76             reader=new SequenceFile.Reader(fs,new Path(localCacheFile),conf);
 77             IntWritable key= (IntWritable)ReflectionUtils.newInstance(reader.getKeyClass(),conf);
 78             DoubleArrayWritable value= (DoubleArrayWritable)ReflectionUtils.newInstance(reader.getValueClass(),conf);
 79             int valueLength=0;
 80             int rowIndex=0;
 81             while (reader.next(key,value)){
 82                 obValue=value.toArray();
 83                 rowIndex=key.get();
 84                 if(rowIndex<1){
 85                 valueLength=Array.getLength(obValue);
 86                 }
 87                 leftMatrix[rowIndex]=new double[conf.getInt("leftMatrixColumnNum",10)];
 88                 //this.leftMatrix=new double[valueLength][Integer.parseInt(context.getConfiguration().get("leftMatrixColumnNum"))];
 89                 for (int i=0;i<valueLength;++i){
 90                     this.leftMatrix[rowIndex][i]=Double.parseDouble(Array.get(obValue, i).toString());
 91                 }
 92 
 93             }
 94         }
 95         public void map(IntWritable key,DoubleArrayWritable value,Context context) throws IOException, InterruptedException {
 96             obValue=value.toArray();
 97             InputSplit inputSplit=context.getInputSplit();
 98             String fileName=((FileSplit)inputSplit).getPath().getName();
 99             if (fileName.startsWith("FB")) {
100                 context.write(key,value);
101             }
102             else{
103                 arraySum=new DoubleWritable[this.leftMatrix.length];
104                 for (int i=0;i<this.leftMatrix.length;++i){
105                     sum=0;
106                     for (int j=0;j<this.leftMatrix[0].length;++j){
107                         sum+= this.leftMatrix[i][j]*Double.parseDouble(Array.get(obValue,j).toString())*(double)(context.getConfiguration().getFloat("u",1f));
108                     }
109                     arraySum[i]=new DoubleWritable(sum);
110                     //arraySum[i].set(sum);
111                 }
112                 map_value.set(arraySum);
113                 context.write(key,map_value);
114             }
115         }
116     }
117   public static class MyReducer extends Reducer<IntWritable,DoubleArrayWritable,IntWritable,DoubleArrayWritable>{
118         public DoubleWritable[] sum=null;
119         public Object obValue=null;
120         public DoubleArrayWritable valueArrayWritable=null;
121 
122         public void setup(Context context){
123             int leftMatrixColumnNum=context.getConfiguration().getInt("leftMatrixColumnNum",100);
124             sum=new DoubleWritable[leftMatrixColumnNum];
125             for (int i=0;i<leftMatrixColumnNum;++i){
126                 sum[i]=new DoubleWritable(0.0);
127             }
128         }
129 
130         public void reduce(IntWritable key,Iterable<DoubleArrayWritable>value,Context context) throws IOException, InterruptedException {
131             int valueLength=0;
132             for(DoubleArrayWritable doubleValue:value){
133                 obValue=doubleValue.toArray();
134                 valueLength=Array.getLength(obValue);
135                 for (int i=0;i<valueLength;++i){
136                     sum[i]=new DoubleWritable(Double.parseDouble(Array.get(obValue,i).toString())+sum[i].get());
137                 }
138             }
139             valueArrayWritable=new DoubleArrayWritable();
140             valueArrayWritable.set(sum);
141             context.write(key,valueArrayWritable);
142             for (int i=0;i<sum.length;++i){
143                 sum[i].set(0.0);
144             }
145 
146         }
147     }
148 }
149 class DoubleArrayWritable extends ArrayWritable {
150     public DoubleArrayWritable(){
151         super(DoubleWritable.class);
152     }
153     /*
154     public String toString(){
155         StringBuilder sb=new StringBuilder();
156         for (Writable val:get()){
157             DoubleWritable doubleWritable=(DoubleWritable)val;
158             sb.append(doubleWritable.get());
159             sb.append(",");
160         }
161         sb.deleteCharAt(sb.length()-1);
162         return sb.toString();
163     }
164     */
165 }

  以上就是单机模式下(IDEA)中使用分布式缓存进行矩阵乘法的实例,路径必须是本地路径就可以了(33~37),就是我创建的工程中的路径。

 

posted @ 2016-03-07 17:27  lz3018  阅读(387)  评论(0编辑  收藏  举报