MR实现--矩阵乘法

  1 import java.io.IOException;
  2 import org.apache.hadoop.conf.Configuration;
  3 import org.apache.hadoop.io.*;
  4 import org.apache.hadoop.mapreduce.Job;
  5 import org.apache.hadoop.mapreduce.Mapper;
  6 import org.apache.hadoop.mapreduce.Reducer;
  7 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
  8 import org.apache.hadoop.mapreduce.lib.input.FileSplit;
  9 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 10 import org.apache.hadoop.fs.Path;
 11 public class matrix {
 12     public static int rowM=0;
 13     public static int columnM=0;
 14     public static int columnN=0;
 15     public static class MyMapper extends Mapper<Object, Text, Text, Text>{
 16         private Text map_key=new Text();
 17         private Text map_value=new Text();        
 18         public void setup(Context context){
 19             Configuration conf=context.getConfiguration();
 20             columnN=Integer.parseInt(conf.get("columnN"));
 21             rowM=Integer.parseInt(conf.get("rowM"));
 22         }
 23         public void map(Object key,Text value,Context context) throws IOException, InterruptedException{
 24             FileSplit fileSplit=(FileSplit)context.getInputSplit();
 25             String filename=fileSplit.getPath().getName();            
 26             System.out.println("map的数据分片长度是:"+fileSplit.getLength());
 27             System.out.println("数据分片的起始位置是:"+fileSplit.getStart());
 28             String[] tempLocation=fileSplit.getLocations();
 29             for (String string : tempLocation) {
 30                 System.out.println("数据分片所在的主机是:"+string);
 31             }
 32             if(filename.contains("M")){            
 33             String[] tuple=value.toString().split(",");
 34             int i=Integer.parseInt(tuple[0]);
 35             String[] tupleS=tuple[1].split("\t");
 36             int j=Integer.parseInt(tupleS[0]);
 37             int Mij=Integer.parseInt(tupleS[1]);
 38             for (int k = 1; k <columnN+1 ; k++) {
 39                 map_key.set(i+","+k);
 40                 map_value.set("M"+","+j+","+Mij);
 41                 context.write(map_key, map_value);                
 42             }
 43             }
 44             else if(filename.contains("N")){            
 45                 String[] tuple=value.toString().split(",");
 46                 int j=Integer.parseInt(tuple[0]);
 47                 String[] tupleS=tuple[1].split("\t");
 48                 int k=Integer.parseInt(tupleS[0]);
 49                 int Njk=Integer.parseInt(tupleS[1]);
 50                 for (int i = 1; i <rowM+1 ; i++) {
 51                     map_key.set(i+","+k);
 52                     map_value.set("N"+","+j+","+Njk);
 53                     context.write(map_key, map_value);                
 54                 }                
 55             }
 56         }
 57     }
 58     public static class MyReducer extends Reducer<Text, Text, Text, Text>{
 59         private int sum=0;
 60         public void setup(Context context) throws IOException{
 61             Configuration conf=context.getConfiguration();
 62             columnM=Integer.parseInt(conf.get("columnM"));    
 63         }
 64     public void reduce(Text key,Iterable<Text> value,Context context)throws IOException,InterruptedException{
 65         int[] M=new int[columnM+1];
 66         int[] N=new int[columnM+1];
 67         System.out.println(key.toString()+"对应的value列表所有值是:");
 68         for (Text val : value){
 69             System.out.println(val.toString());
 70             String[] tuple=val.toString().split(",");
 71             if(tuple[0].equals("M")){
 72                 M[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]);                
 73             }else {
 74                 N[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]);        
 75             }
 76         }
 77         for (int j=1;j<columnM+1;++j) {
 78             sum+=M[j]*N[j];
 79         }
 80         context.write(key, new Text(Integer.toString(sum)));
 81         sum=0;        
 82     }        
 83     }
 84     public static void main(String[] args)throws Exception {
 85         if(args.length!=3){
 86             System.err.println("Usage: MatrixMultiply <inputPathM> <inputPathN> <outputPath>");
 87         System.exit(2);
 88         }
 89         else{
 90             System.out.println("M文件路径:"+args[0]);
 91             String[] infoTupleM=args[0].split("_");
 92             rowM=Integer.parseInt(infoTupleM[1]);
 93             columnM=Integer.parseInt(infoTupleM[2]);
 94             String[] infoTupleN=args[1].split("_");
 95             columnN=Integer.parseInt(infoTupleN[2]);                
 96         }
 97         Configuration conf=new Configuration();
 98         conf.set("columnM", Integer.toString(columnM));
 99         conf.set("rowM", Integer.toString(rowM));
100         conf.set("columnN", Integer.toString(columnN));
101         Job job=new Job(conf, "Matrix");
102         job.setJarByClass(matrix.class);
103         job.setMapperClass(MyMapper.class);
104         job.setReducerClass(MyReducer.class);
105         job.setOutputKeyClass(Text.class);
106         job.setOutputValueClass(Text.class);
107         FileInputFormat.setInputPaths(job, new Path(args[0]),new Path(args[1]));
108         FileOutputFormat.setOutputPath(job, new Path(args[2]));
109         System.exit(job.waitForCompletion(true)?0:1);        
110     }
111 }

     以上是j计算矩阵M*N结果的源码,总共需要三个输入参数,分别是:M矩阵的路径、N矩阵的路径以及结果的输入路径。其中M存放在文件中,文件的格式是"M_rows_columns",实验的矩阵文件是M_300_500。实验中N的文件是N_500_700。并且M和N文件中的格式都是相同的,都是"i,j\tMij"的形式,其中i表示元素所在矩阵的行数,j表示元素所在矩阵的列数,Mij表示矩阵元素。如下图所示(N_500_700中形式也是如此):

矩阵内都是随机数,矩阵文件由以下shell脚本生成:

#!/bin/bash
for i in `seq 1 $1`
do
    for j in `seq 1 $2`
    do 
        s=$(($RANDOM%100))
            echo -e "$i,$j\t$s" >>M_$1_$2
    done
done

2)map的输出形式:

假设M是i*j的矩阵,N是j*k的矩阵。

对于M矩阵:map的输出形式是(<i,k>,<"M",j,Mij>),其中<i,k>是key,<"M",j,Mij>是value。

M表示此键值对是M矩阵的内容

Mij是M矩阵中的一个元素

i和j是这个元素在矩阵中的位置

k是矩阵N的列数

对于N矩阵:map的输出形式是(<i,k>,<"N",j,Njk>),其中<i,k>是key,<"N",j,Njk>是value。

可以看到M和N经过map处理之后输出形式类似,key完全一样,其实key就表示结果矩阵中的第i行第k列,而reduce就是将<"M",j,Mij>和<"N",j,Njk>对应的元素相乘。

3)而map的输入形式是“1,1  87 ”(也就是i,j,Mij),而map的输出形式是(<i,k>,<"M",j,Mij>),只有k是未知的,其实k就是N的列数,也是结果矩阵的列数,

从M中读取的数据就只有i,j,Mij,k就是N的列数,所以:

 1     if(filename.contains("M")){            
 2             String[] tuple=value.toString().split(",");
 3             int i=Integer.parseInt(tuple[0]);
 4             String[] tupleS=tuple[1].split("\t");
 5             int j=Integer.parseInt(tupleS[0]);
 6             int Mij=Integer.parseInt(tupleS[1]);
 7             for (int k = 1; k <columnN+1 ; k++) {
 8                 map_key.set(i+","+k);
 9                 map_value.set("M"+","+j+","+Mij);
10                 context.write(map_key, map_value);                
11             }
12             }

从N矩阵中读取到j,k,Njk,所以i就是M的行数,对于N是:

 1 else if(filename.contains("N")){            
 2                 String[] tuple=value.toString().split(",");
 3                 int j=Integer.parseInt(tuple[0]);
 4                 String[] tupleS=tuple[1].split("\t");
 5                 int k=Integer.parseInt(tupleS[0]);
 6                 int Njk=Integer.parseInt(tupleS[1]);
 7                 for (int i = 1; i <rowM+1 ; i++) {
 8                     map_key.set(i+","+k);
 9                     map_value.set("N"+","+j+","+Njk);
10                     context.write(map_key, map_value);                
11                 }                
12             }

4)作业的配置,有个地方需要注意,就是设置了每个Map和Reduce节点都可以共享的三个变量:

1     conf.set("columnM", Integer.toString(columnM));
2     conf.set("rowM", Integer.toString(rowM));
3     conf.set("columnN", Integer.toString(columnN));

5)为了获得columnN和rowM,重载了Mapper的setup函数:

1 public void setup(Context context){
2             Configuration conf=context.getConfiguration();
3             columnN=Integer.parseInt(conf.get("columnN"));
4             rowM=Integer.parseInt(conf.get("rowM"));
5         }

通过conf的get函数获得。同样的,为获得columnM,也重载了Reducer的setup函数。

1     public void setup(Context context) throws IOException{
2             Configuration conf=context.getConfiguration();
3             columnM=Integer.parseInt(conf.get("columnM"));    
4         }

 6)由于定义的reduce数量是5,所以最终生成了5个结果文件。

posted @ 2015-11-09 15:06  lz3018  阅读(618)  评论(0编辑  收藏  举报