51nod 1217 Minimum Modular

N个不同的数a[1],a[2]...a[n],你可以从中去掉K个数,并且找到一个正整数M,使得剩下的N - K个数,Mod M的结果各不相同,求M的最小值。
Input
第1行:2个数N, K,中间用空格分隔,N表示元素的数量,K为可以移除的数的数量(1 <= N <= 5000, 0 <= K <= 4, 1 <= a[i] <= 1000000)。
Output
输出符合条件的最小的M。
Input示例
5 1
1
2
10
11
12
Output示例
4
————————————————————————
如果a%mod==b%mod 那么(a-b)%mod==0
所以我们可以枚举mod 然后一波剪枝水过QAQ
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int M=1e5+7,N=1000007;
int read(){
    int ans=0,f=1,c=getchar();
    while(c<'0'||c>'9'){if(c=='-') f=-1; c=getchar();}
    while(c>='0'&&c<='9'){ans=ans*10+(c-'0'); c=getchar();}
    return ans*f;
}
int n,k,mx,v[M],vis[N],f[N];
int main()
{
    n=read(); k=read();
    if(n+1<=k) return puts("1"),0;
    for(int i=1;i<=n;i++) v[i]=read(),mx=max(mx,v[i]);
    sort(v+1,v+1+n);
    for(int i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++)
            f[v[j]-v[i]]++;
    for(int i=n-k;i<=mx;i++){
        int cnt=0;
        for(int j=1;i*j<=mx;j++) cnt+=f[i*j];
        if(cnt>(k*(k+1)>>1)) continue;
        cnt=0;
        for(int j=1;j<=n;j++){
            int now=v[j]%i;
            if(vis[now]!=i) vis[now]=i;
            else cnt++;
        }
        if(cnt<=k) return printf("%d\n",i),0;
    }
    return 0;
}
View Code

 

 
posted @ 2017-10-28 19:44  友人Aqwq  阅读(136)  评论(0编辑  收藏  举报