51nod 1190 最小公倍数之和 V2
给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b)。
例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66。
由于结果可能很大,输出Mod 10^9 + 7的结果。(测试数据为随机数据,没有构造特别坑人的Test)
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)
第2 - T + 1行:每行2个数a, b,中间用空格分隔(1 <= a <= b <= 10^9)
Output
共T行,输出对应的最小公倍数之和Mod 10^9 + 7的结果。
Input示例
3
1 6
10 15
41 90
Output示例
66
675
139860
—————————————————————————————————
这道题可以转化一下公式变成莫比乌斯反演
d*mu(d) 因为是积性函数 所以可以直接推 这样就完成辣2333
#include<cstdio> #include<cstring> #include<algorithm> #define LL long long const int M=1e5+7,mod=1e9+7,P=(mod+1)/2,mx=4e4+7; using std::max; int read(){ int ans=0,f=1,c=getchar(); while(c<'0'||c>'9'){if(c=='-') f=-1; c=getchar();} while(c>='0'&&c<='9'){ans=ans*10+(c-'0'); c=getchar();} return ans*f; } int T,n,p[M],cnt,h[M],pri[mx],xp; LL v,ans,vis[mx],l; void dfs(int step,LL T,LL g){ if(step==cnt+1){ ans=(ans+((1+n/T)*(n/T)/2-(1+l/T)*(l/T)/2)%mod*g%mod)%mod; return ; } LL sum=1; dfs(step+1,T*sum,g); for(int i=1;i<=h[step];i++){ sum=sum*p[step]; dfs(step+1,T*sum,g*(1-p[step])); } } int main(){ T=read(); for(int i=2;i<=mx;i++)if(!vis[i]){ pri[++xp]=i; vis[i]=1; for(int j=2*i;j<=mx;j+=i) vis[j]=1; } while(T--){ cnt=0; ans=0; l=read()-1; n=read(); v=n; for(LL x=1;pri[x]*pri[x]<=v;x++)if(v%pri[x]==0){ p[++cnt]=pri[x]; h[cnt]=0; while(v%pri[x]==0) v/=pri[x],h[cnt]++; } if(v!=1) p[++cnt]=v,h[cnt]=1; dfs(1,1,1); ans=(ans%mod+mod)%mod; printf("%lld\n",n*ans%mod); } return 0; }