Patchwork(2013年)--CNV检测方法流程
文章题目:Patchwork: allele-specific copy number analysis of whole-genome sequenced tumor tissue
特点: 可以检测配对样本,也可以检测带reference的tumor样本。但是没有考虑肿瘤异质性问题。使用DNAcopy包的CBS分割,control-freec的GC校正方法。bin size=200bp。
http://patchwork.r-forge.r-project.org/#tabr10
Patchwork的输入:
1),An aligned and sorted tumor BAM file. (.bai, pileup of bam, .vcf)
2)a reference or matched normal BAMfile
安装:
install.packages("patchworkCG", repos="http://R-Forge.R-project.org") library(patchworkCG) #产生输入文件: Samtools sort <tumorfile>.bam <tumorfile.sorted>.bam Samtools index <tumor_or_normalfile>.bam Samtools mpileup -f <humangenome>.fasta <tumor_or_normal>.bam > mpileup Samtools mpileup -uf <humangenome>.fasta <tumor_or_normal>.bam | bcftools view -bvcg > <unfiltered_output>.bcf Bcftools view <unfiltered_output>.bcf | vafutils.pl varFilter -D100 > <output>.vcf 方法流程: Library(patchwork) Library(patchworkData) ?patchwork.plot patchwork.plot(Tumor.bam="patchwork.example.bam",Tumor.pileup="patchwork.example.pileup",Reference="../HCC1954/datasolexa.RData") ###To infer the arguments for patchwork.copynumbers() you will need to look at one of the chromosomal plots generated using patchwork.plot(). The structure and relationships in the plot can be interpreted to figure out the most probable locations of the allele-specific copy numbers patchwork.copynumbers(CNfile=”path/to/prefix_copynumbers.Rdata”,cn2=0.8,delta=0.28,het=0.21,hom=0.79)
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步