spark相关脚本解析

spark-shell/spark-submit/pyspark等关系如下:

 

#spark-submit 逻辑:

################################################

#从spark-shell调用之后,传进来--class org.apache.spark.repl.Main --name "Spark shell" --master spark://ip:7077
#先检测spark_home,然后去调用spark_home/bin/spark-class 会将org.apache.spark.deploy.SparkSubmit作为第一个参数,
#----- 会执行脚本spark-class org.apache.spark.deploy.SparkSubmit --class org.apache.spark.repl.Main --name"Spark shell" --master spark://ip:7077

#####################################

#!/usr/bin/env bash

if [-z "${SPARK_HOME}" ]; then

  export SPARK_HOME="$(cd "`dirname"$0"`"/..; pwd)"

fi

 

#disable randomized hash for string in Python 3.3+

exportPYTHONHASHSEED=0

#exec 执行完面的命令,exec 命令,是创建一个新的进程,只不过这个进程与前一个进程的ID是一样的。

#这样,原来的脚本剩余的部分代码就不能执行了,因为相当于换了一个进程。

exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit " $@"
#以下是spark-class逻辑:
###########################################################################

#--如果是spark-shell从spark-submit脚本传进来如下参数:

org.apache.spark.deploy.SparkSubmit --classorg.apache.spark.repl.Main --name "Spark shell" --master spark://ip:7077
#如果自己的application则直接执行spark-submit 脚本传入自己的--class等参数信息就可以

###########################################################################

#还是判断了一下SPARK_HOME环境变量是否存在
if [ -z "${SPARK_HOME}" ]; then
  export SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)"
fi

#配置一些环境变量,它会将conf/spark-env.sh中的环境变量加载进来:
. "${SPARK_HOME}"/bin/load-spark-env.sh

# Find the java binary
#如果有java_home环境变量会将java_home/bin/java给RUNNER
#if [ -n str ] 表示当串的长度大于0时为真
if [ -n "${JAVA_HOME}" ]; then
  RUNNER="${JAVA_HOME}/bin/java"
else
  if [ `command -v java` ]; then
    RUNNER="java"
  else
    echo "JAVA_HOME is not set" >&2
    exit 1
  fi
fi

# Find Spark jars.
#会先找spark_home/RELESE文本是否存在,如果存在将spark_home/lib目录给变量ASSEMBLY_DIR
#spark2目录是${SPARK_HOME}/jars,spark1.x目录是${SPARK_HOME}/lib
if [ -f "${SPARK_HOME}/RELEASE" ]; then
  SPARK_JARS_DIR="${SPARK_HOME}/jars"
else
  SPARK_JARS_DIR="${SPARK_HOME}/assembly/target/scala-$SPARK_SCALA_VERSION/jars"
fi

#---ls -1与ls -l的区别在于ls -1只会返回文件名,没有文件类型,大小,日期等信息。num_jars返回spark-assembly的jar有多少个 
#GREP_OPTIONS= num_jars="$(ls-1 "$ASSEMBLY_DIR" | grep "^spark-assembly.*hadoop.*\.jar$"| wc -l)" 
#---如果$num_jars为0,会报错并退出
# if ["$num_jars" -eq "0" -a -z "$SPARK_ASSEMBLY_JAR"-a "$SPARK_PREPEND_CLASSES" != "1" ]; then 
#  echo "Failed to find Spark assembly in$ASSEMBLY_DIR." 1>&2 
#  echo "You need to build Spark beforerunning this program." 1>&2 
#  exit 1 
#fi

if [ ! -d "$SPARK_JARS_DIR" ] && [ -z "$SPARK_TESTING$SPARK_SQL_TESTING" ]; then
  echo "Failed to find Spark jars directory ($SPARK_JARS_DIR)." 1>&2
  echo "You need to build Spark with the target \"package\" before running this program." 1>&2
  exit 1
else
  LAUNCH_CLASSPATH="$SPARK_JARS_DIR/*"
fi

# Add the launcher build dir to the classpath if requested.
if [ -n "$SPARK_PREPEND_CLASSES" ]; then
  LAUNCH_CLASSPATH="${SPARK_HOME}/launcher/target/scala-$SPARK_SCALA_VERSION/classes:$LAUNCH_CLASSPATH"
fi

# For tests
if [[ -n "$SPARK_TESTING" ]]; then
  unset YARN_CONF_DIR
  unset HADOOP_CONF_DIR
fi

# The launcher library will print arguments separated by a NULL character, to allow arguments with
# characters that would be otherwise interpreted by the shell. Read that in a while loop, populating
# an array that will be used to exec the final command.
#
# The exit code of the launcher is appended to the output, so the parent shell removes it from the
# command array and checks the value to see if the launcher succeeded.
build_command() {
  "$RUNNER" -Xmx128m -cp "$LAUNCH_CLASSPATH" org.apache.spark.launcher.Main "$@"
  printf "%d\0" $?
}

CMD=()
while IFS= read -d '' -r ARG; do
  CMD+=("$ARG")
done < <(build_command "$@") ##调用org.apache.spark.launcher.Main拼接提交命令

COUNT=${#CMD[@]}
LAST=$((COUNT - 1))
LAUNCHER_EXIT_CODE=${CMD[$LAST]}  

# Certain JVM failures result in errors being printed to stdout (instead of stderr), which causes
# the code that parses the output of the launcher to get confused. In those cases, check if the
# exit code is an integer, and if it's not, handle it as a special error case.
if ! [[ $LAUNCHER_EXIT_CODE =~ ^[0-9]+$ ]]; then
  echo "${CMD[@]}" | head -n-1 1>&2
  exit 1
fi

if [ $LAUNCHER_EXIT_CODE != 0 ]; then
  exit $LAUNCHER_EXIT_CODE
fi

CMD=("${CMD[@]:0:$LAST}")
exec "${CMD[@]}"   ##shell拉起命令

##CMD形如:
#/usr/java/jdk1.7.0_79/bin/java -cp /opt/cloudera/parcels/SPARK2-2.0.0.cloudera.beta1-1.cdh5.7.0.p0.108015/lib/spark2/conf/:/opt/cloudera/parcels/SPARK2-2.0.0.cloudera.beta1-1.cdh5.7.0.p0.108015/lib/spark2/jars/*:/etc/hadoop/:/etc/hadoop/conf.cloudera.yarn/ -XX:MaxPermSize=256m org.apache.spark.deploy.SparkSubmit --master yarn --deploy-mode cluster --conf spark.driver.extraClassPath=/opt/cloudera/parcels/CDH/lib/hbase/lib/* --conf spark.scheduler.mode=FAIR --conf spark.executorEnv.JAVA_HOME=/usr/java/jdk1.8 --conf spark.yarn.appMasterEnv.JAVA_HOME=/usr/java/jdk1.8 --conf spark.yarn.maxAppAttempts=1 --class opHbase.opHbase.TopHbase --name Hbase --verbose --files /etc/hadoop/conf/log4j.properties,/etc/hive/conf/hive-site.xml --jars hdfs://10.8.18.74:8020/ada/spark/share/tech_component/tc.plat.spark.jar,hdfs://10.8.18.74:8020/ada/spark/share/tech_component/bigdata4i-1.0.jar,hdfs://10.8.18.74:8020/ada/spark/share/tech_component/bigdata-sparklog-1.0.jar,hdfs://108474.server.bigdata.com.cn:8020/user/lyy/App/tc.app.test.opHbase-1.0.jar,hdfs://10.8.18.74:8020/ada/spark/share/tech_component/mysql-connector-java-5.1.24-bin.jar hdfs://108474.server.bigdata.com.cn:8020/user/lyy/App/opHbase.opHbase.jar loglevel=ALL path=hdfs://108474.server.bigdata.com.cn:8020/user/lyy/data/hfile hbtab=hbase_test
#假如是spark-shell提交的,形如:
#env LD_LIBRARY_PATH=:/opt/cloudera/parcels/CDH-5.8.2-1.cdh5.8.2.p0.3/lib/hadoop/lib/native:/opt/cloudera/parcels/CDH-5.8.2-1.cdh5.8.2.p0.3/lib/hadoop/lib/native /usr/java/jdk1.7.0_79/bin/java -cp /opt/cloudera/parcels/SPARK2-2.0.0.cloudera.beta1-1.cdh5.7.0.p0.108015/lib/spark2/conf/:/opt/cloudera/parcels/SPARK2-2.0.0.cloudera.beta1-1.cdh5.7.0.p0.108015/lib/spark2/jars/*:/opt/cloudera/parcels/SPARK2-2.0.0.cloudera.beta1-1.cdh5.7.0.p0.108015/lib/spark2/conf/yarn-conf/ -Dscala.usejavacp=true -Xmx1g -XX:MaxPermSize=256m org.apache.spark.deploy.SparkSubmit --class org.apache.spark.repl.Main --name Spark shell spark-shell
spark-config.sh 初始化环境变量 SPARK_CONF_DIR, PYTHONPATH
bin/load-spark-env.sh
初始化环境变量SPARK_SCALA_VERSION,
调用%SPARK_HOME%/conf/spark-env.sh加载用户自定义环境变量
conf/spark-env.sh 用户自定义配置
start-all.sh 同时启动master和slave
#start-daemon.sh
#主要完成进程相关基本信息初始化,然后调用bin/spark-class进行守护进程启动,该脚本是创建端点的通用脚本,
#三端各自脚本都会调用spark-daemon.sh脚本启动各自进程 #!/usr/bin/env bash ..................... ##调用spark-config.sh . "${SPARK_HOME}/sbin/spark-config.sh" ..................... ##调用load-spark-env.sh加载spark环境变量 . "${SPARK_HOME}/bin/load-spark-env.sh" ..................... # some variables log="$SPARK_LOG_DIR/spark-$SPARK_IDENT_STRING-$command-$instance-$HOSTNAME.out" ##日志目录 pid="$SPARK_PID_DIR/spark-$SPARK_IDENT_STRING-$command-$instance.pid" ##pid目录 ..................... run_command() { mode="$1" shift ............. case "$mode" in (class) ##直接调用spark-class,该命令用于启动master或者slave execute_command nice -n "$SPARK_NICENESS" "${SPARK_HOME}"/bin/spark-class "$command" "$@" ;; (submit) execute_command nice -n "$SPARK_NICENESS" bash "${SPARK_HOME}"/bin/spark-submit --class "$command" "$@" 调用spark-submit ;; (*) echo "unknown mode: $mode" exit 1 ;; esac } case $option in (submit)## 用于提交任务 run_command submit "$@" ;; (start) ##用于启动 run_command class "$@" ;; ..................... esac
##start-master.sh:

#!/usr/bin/env bash

.............................

CLASS="org.apache.spark.deploy.master.Master"  #设置主类名称Master



###加载相应脚本,获取spark环境变量及配置
. "${SPARK_HOME}/sbin/spark-config.sh"
. "${SPARK_HOME}/bin/load-spark-env.sh"

if [ "$SPARK_MASTER_PORT" = "" ]; then
  SPARK_MASTER_PORT=7077  ##设置进程端口
fi

if [ "$SPARK_MASTER_HOST" = "" ]; then
  case `uname` in
      (SunOS)
      SPARK_MASTER_HOST="`/usr/sbin/check-hostname | awk '{print $NF}'`"
      ;;
      (*)
      SPARK_MASTER_HOST="`hostname -f`"  ##获取master启动所在的主机名称
      ;;
  esac
fi

if [ "$SPARK_MASTER_WEBUI_PORT" = "" ]; then
  SPARK_MASTER_WEBUI_PORT=8080  ##webui端口
fi
##调用spark-daemon.sh启动
##"${SPARK_HOME}/sbin"/spark-daemon.sh start org.apache.spark.deploy.master.Master 1 --host $SPARK_MASTER_HOST --port  \
# $SPARK_MASTER_PORT --webui-port $SPARK_MASTER_WEBUI_PORT $ORIGINAL_ARGS
##最后转换成:
##bin/spark-class --class org.apache.spark.deploy.master.Master --host $SPARK_MASTER_HOST --port $SPARK_MASTER_PORT \
#--webui-port $SPARK_MASTER_WEBUI_PORT $ORIGINAL_ARGS
"${SPARK_HOME}/sbin"/spark-daemon.sh start $CLASS 1 \ --host $SPARK_MASTER_HOST --port $SPARK_MASTER_PORT --webui-port $SPARK_MASTER_WEBUI_PORT \ $ORIGINAL_ARGS
##stat-slaves.sh:

#!/usr/bin/env bash

.......................

##调用脚本初始化环境

. "${SPARK_HOME}/sbin/spark-config.sh"
. "${SPARK_HOME}/bin/load-spark-env.sh"

# Find the port number for the master
if [ "$SPARK_MASTER_PORT" = "" ]; then
  SPARK_MASTER_PORT=7077  ##master的端口
fi

if [ "$SPARK_MASTER_HOST" = "" ]; then
  case `uname` in
      (SunOS)
      SPARK_MASTER_HOST="`/usr/sbin/check-hostname | awk '{print $NF}'`"
      ;;
      (*)
      SPARK_MASTER_HOST="`hostname -f`" ##master的主机名
      ;;
  esac
fi

# Launch the slaves
"${SPARK_HOME}/sbin/slaves.sh" cd "${SPARK_HOME}" \; "${SPARK_HOME}/sbin/start-slave.sh" "spark://$SPARK_MASTER_HOST:$SPARK_MASTER_PORT"



##${SPARK_HOME}/sbin/slaves.sh:

#!/usr/bin/env bash

........................
. "${SPARK_HOME}/sbin/spark-config.sh"


. "${SPARK_HOME}/bin/load-spark-env.sh"

###获取slaves列表
if [ "$HOSTLIST" = "" ]; then
  if [ "$SPARK_SLAVES" = "" ]; then
    if [ -f "${SPARK_CONF_DIR}/slaves" ]; then
      HOSTLIST=`cat "${SPARK_CONF_DIR}/slaves"`
    else
      HOSTLIST=localhost
    fi
  else
    HOSTLIST=`cat "${SPARK_SLAVES}"`
  fi
fi
........................


if [ "$SPARK_SSH_OPTS" = "" ]; then
  SPARK_SSH_OPTS="-o StrictHostKeyChecking=no"
fi

##读取conf/slaves文件并遍历,通过ssh连接到对应slave节点,启动 ${SPARK_HOME}/sbin/start-slave.sh spark://$SPARK_MASTER_HOST:$SPARK_MASTER_PORT for slave in `echo "$HOSTLIST"|sed "s/#.*$//;/^$/d"`; do if [ -n "${SPARK_SSH_FOREGROUND}" ]; then ssh $SPARK_SSH_OPTS "$slave" $"${@// /\\ }" \ 2>&1 | sed "s/^/$slave: /" else ssh $SPARK_SSH_OPTS "$slave" $"${@// /\\ }" \ 2>&1 | sed "s/^/$slave: /" & fi if [ "$SPARK_SLAVE_SLEEP" != "" ]; then sleep $SPARK_SLAVE_SLEEP fi done wait ###"${SPARK_HOME}/sbin/start-slave.sh": #!/usr/bin/env bash # Starts a slave on the machine this script is executed on. # # Environment Variables # # SPARK_WORKER_INSTANCES The number of worker instances to run on this # slave. Default is 1. # SPARK_WORKER_PORT The base port number for the first worker. If set, # subsequent workers will increment this number. If # unset, Spark will find a valid port number, but # with no guarantee of a predictable pattern. # SPARK_WORKER_WEBUI_PORT The base port for the web interface of the first # worker. Subsequent workers will increment this # number. Default is 8081. # NOTE: This exact class name is matched downstream by SparkSubmit. # Any changes need to be reflected there. CLASS="org.apache.spark.deploy.worker.Worker" . "${SPARK_HOME}/sbin/spark-config.sh" . "${SPARK_HOME}/bin/load-spark-env.sh" ....................... MASTER=$1 #获取master参数 shift # Determine desired worker port if [ "$SPARK_WORKER_WEBUI_PORT" = "" ]; then SPARK_WORKER_WEBUI_PORT=8081 #work的webui端口 fi # Start up the appropriate number of workers on this machine. # quick local function to start a worker function start_instance { WORKER_NUM=$1 ##通过SPARK_WORKER_INSTANCES得到 WORKER_NUM shift if [ "$SPARK_WORKER_PORT" = "" ]; then PORT_FLAG= PORT_NUM= else PORT_FLAG="--port" PORT_NUM=$(( $SPARK_WORKER_PORT + $WORKER_NUM - 1 )) ##端口依次递增 fi WEBUI_PORT=$(( $SPARK_WORKER_WEBUI_PORT + $WORKER_NUM - 1 )) ##${SPARK_HOME}/sbin /spark-daemon.sh start org.apache.spark.deploy.worker.Worker $WORKER_NUM \
##--webui-port "$WEBUI_PORT" $PORT_FLAG $PORT_NUM $MASTER "$@" "${SPARK_HOME}/sbin"/spark-daemon.sh start $CLASS $WORKER_NUM \ --webui-port "$WEBUI_PORT" $PORT_FLAG $PORT_NUM $MASTER "$@" } if [ "$SPARK_WORKER_INSTANCES" = "" ]; then start_instance 1 "$@" else for ((i=0; i<$SPARK_WORKER_INSTANCES; i++)); do start_instance $(( 1 + $i )) "$@" done fi

 

posted @ 2018-09-29 10:25  一直爬行的蜗牛牛  阅读(1064)  评论(0编辑  收藏  举报