20201317 LYX 第九周学习总结
信号和信号处理
知识点总结
- 介绍信号和中断的统一处理,有助于从正确的角度看待信号;
- 将信号视为进程中断,将进程从正常执行转移到信号处理;
- 解释信号的来源;
- 解释Unix/Linux 中的信号处理,包括信号类型、信号向量位、信号掩码位、进程PROC结构体中的信号处理程序以及信号处理步骤;
- 讨论将信号用作进程间通信(IPC)机制的适用性。
信号和中断
进程中断
这类中断是发送给进程的中断。当某进程正在执行时,可能会收到来自3个不同来源的中断∶
来自硬件的中断∶终端、间隔定时器的"Ctrl+C"组合键等。
来自其他进程的中断∶kill(pid,SIG#)、death of child等。
自己造成的中断∶除以0、无效地址等。 每个进程中断都被转换为一个唯一ID 号,发送给进程Unix/Linux 中的进程中断称为信号,编号为1到31。
进程的PROC结构体中有对应每个信号的动作函数,进程可在收到信号后执行该动作函数。与人员类似,进程也可屏蔽某些类型的信号,以推迟处理。必要时,进程还可能会修改信号动作函数。
硬件中断。
这类中断是发送给处理器或CPU 的信号。它们也有三个可能的来源:
来自硬件的中断∶定时器、I/O设备等。
来自其他处理器的中断:FFP、DMA、多处理器系统中的其他 CPU。
自己造成的中断∶除以0、保护错误、INT指令。
每个中断都有唯一的中断向量号。动作函数是中断向量表中的中断处理程序。
CPU始终执行一个进程。CPU不会导致任何自己造成的中断(除非出错)。这种中断是由于进程正在使用或在大多数情况下误用CPU造成的。前一种情况包括INTn或等效指令,使CPU从用户模式切换到内核模式。后一种情况包括CPU 识别为异常的所有陷阱错误。
- 进程的陷阱错误。
进程可能会自己造成中断。这些中断是由被CPU识别为异常的错误引起的,例如除以0、无效地址、非法指令、越权等。当进程遇到异常时、它会陷入操作系统内核,将陷阱原因转换为信号编号,并将信号发送给自己。如果在用户模式下发生异常,则进程的默认操作是级止。进程可以用信号捕提器代替默认动作函数,允许它在用户模式下处理信号。如果在内核模式下发生陷阱,原因一定是硬件错误,或者很可能是内核代码中的漏洞,在这种情况下,内核无法处理。在 Unix/Uinux中,内核只打印一条PANIC错误消息,然后就停止了。
Unix/Linux信号示例
- 按“Ctrl+C”组合键通常会导致当前运行的进程终止。原因如下。“CtrI+C”组合键会生成一个键盘硬件中断。键盘中断处理程序将“Ctrl+C”组合键转换为SIGINT(2)信号,发送给终端上的所有进程,并唤醒等待键盘输入的进程。在内核模式下,每个进程都要检查和处理未完成的信号。进程对大多数信号的默认操作是调用内核的
kexit(exitValue)
函数来终止。在Linux中,exitValue的低位字节是导致进程终止的信号编号。 - 用户可使用
nohup a.out &
命令在后台运行一个程序。即使在用户退出后,进程仍将继续运行。nohup命令会使sh像往常一样复刻子进程来执行程序,但是子进程会忽略SIGHUP(1)信号。当用户退出时,sh会向与终端有关的所有进程发送一个SIGHUP信号。后台进程在接收到这一信号后,会忽略它并继续运行。为防止后台进程使用终端进行I/O,后台进程通常会断开与终端的连接(通过将其文件描述符0、1、2重定向到/devnull),使其完全不受任何面向终端信号的影响。 - 用户再次登录时可能会发现(通过
ps -u LTD
)后台进程仍在运行。用户可以使用sh命令kill pid(or kil1 -s 9 pid)
杀死该进程。
具体过程如下:执行杀死的进程向pid标识的目标进程发送一个SIGTERM ( 15)信号,请求它死亡。目标进程将会遵从请求并终止。如果进程选择忽略SIGTERM信号,它可能拒绝死亡。在这种情况下,我们可以使用kill -s 9 pid
,肯定能杀死它。因为进程不能修改对9号信号的动作。
之所以是9个信号是因为在最初的Unix中,只有9个信号。9号信号被保留为终止进程的终极手段。虽然后来的Unix/Linux系统将信号编号扩展到了31,但是信号编号9的含义仍然保留了下来。
Unix/Linux支持31种不同的信号,每种信号在signal.h文件中都有定义。
#define SIGHUP 1
#define SIGINT 2
#define SIGQUIT 3
#define SIGILL 4
#define SIGTRAP 5
#define SIGABRT 6
#define SIGIOT 6
#define SIGBUS 7
#define SIGFPE 8
#define SIGKILL 9
#define SIGUSR1 10
#define SIGSEGV 11
#define SIGUSR2 12
#define SIGPIPE 13
#define SIGALRM 14
#define SIGTERM 15
#define SIGSTKFLT 16
#define SIGCHLD 17
#define SIGCONT 18
#define SIGSTOP 19
#define SIGTSTP 20
#dpfine STGTTTN 21
#define SIGTTOU 22
#define SIGURG 23
#define SIGXCPU 24
#define SIGXFSZ 25
#define SIGVTALRM 26
#define SIGPROF 27
#define SIGWINCH 28
#define SIGPOLL 29
#define SIGPWR 30
#define SIGSYS 31
信号处理步骤
- 当某进程处于内核模式时,会检查信号并处理未完成的信号。如果某信号有用户安装的捕捉函数,该进程会先清除信号,获取捕捉函数地址,对于大多数陷阱信号,则将已安装的捕捉函数重置为DEFault。然后,它会在用户模式下返回,以执行捕捉函数,以这种方式篡改返回路径。当捕捉函数结束时,它会返回到最初的中断点,即它最后进入内核模式的地方。因此,该进程会先迁回执行捕捉函数,然后再恢复正常执行。
- 重置用户安装的信号捕捉函数:用户安装的陷阱相关信号捕捉函数用于处理用户代码中的陷阱错误。由于捕捉函数也在用户模式下执行,因此可能会再次出现同样的错误。如果是这样,该进程最终会陷入无限循环,一直在用户模式和内核模式之间跳跃。为了防止这种情况,Unix内核通常会在允许进程执行捕捉函数之前先将处理函数重置为 DEFault。这意味着用户安装的捕捉函数只对首次出现的信号有效。若要捕捉再次出现的同一信号,则必须重新安装捕捉函数。但是,用户安装的信号捕捉函数的处理方法并不都一样,在不同Unix版本中会有所不同。例如,在 BSD Unix中,信号处理函数不会被重置,但是该信号在执行信号捕捉函数时会被阻塞。
- 信号和唤醒:在Unix/Lintx内核中有两种SLEEP进程;深度休眠进程和浅度休眠进程。前一种进程不可中断,而后一种进程可由信号中断。如果某进程处于不可中断的SLEEP状态,到达的信号(必须来自硬件中断或其他进程)不会唤醒进程。如果它处于可中断的SLEEP状态,到达的信号将会唤醒它。例如,当某进程等待终端输入时,它会以低优先级休眠,这种休眠是可中断的,SIGINT这类信号即可唤醒它。
实践内容
signal函数
#include <stdio.h>
#include <signal.h>
void sig_catch(int signo){
printf("catch you : %d\n",signo);
return ;
}
int main(){
signal(SIGINT,sig_catch);
while(1);
return 0;
}
void show_handler(int sig)
{
printf("I got signal %d\n", sig);
int i;
for(i = 0; i < 5; i++)
{
printf("i = %d\n", i);
sleep(1);
}
}
int main(void)
{
int i = 0;
struct sigaction act, oldact;
act.sa_handler = show_handler;
sigaddset(&act.sa_mask, SIGQUIT); //见注(1)
act.sa_flags = SA_RESETHAND | SA_NODEFER; //见注(2)
//act.sa_flags = 0; //见注(3)
sigaction(SIGINT, &act, &oldact);
while(1)
{
sleep(1);
printf("sleeping %d\n", i);
i++;
}
}
-
如果在信号SIGINT(Ctrl + c)的信号处理函数show_handler执行过程中,本进程收到信号SIGQUIT(Crt+),将阻塞该信号,直到show_handler执行结束才会处理信号SIGQUIT。
-
SA_NODEFER 一般情况下, 当信号处理函数运行时,内核将阻塞<该给定信号 -- SIGINT>。但是如果设置了SA_NODEFER标记, 那么在该信号处理函数运行时,内核将不会阻塞该信号。 SA_NODEFER是这个标记的正式的POSIX名字(还有一个名字SA_NOMASK,为了软件的可移植性,一般不用这个名字)
SA_RESETHAND 当调用信号处理函数时,将信号的处理函数重置为缺省值。 SA_RESETHAND是这个标记的正式的POSIX名字(还有一个名字SA_ONESHOT,为了软件的可移植性,一般不用这个名字) -
如果不需要重置该给定信号的处理函数为缺省值;并且不需要阻塞该给定信号(无须设置sa_flags标志),那么必须将sa_flags清零,否则运行将会产生段错误。但是sa_flags清零后可能会造成信号丢失!
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <errno.h>
static void sig_usr(int signum)
{
if(signum == SIGUSR1)
{
printf("SIGUSR1 received\n");
}
else if(signum == SIGUSR2)
{
printf("SIGUSR2 received\n");
}
else
{
printf("signal %d received\n", signum);
}
}
int main(void)
{
char buf[512];
int n;
struct sigaction sa_usr;
sa_usr.sa_flags = 0;
sa_usr.sa_handler = sig_usr; //信号处理函数
sigaction(SIGUSR1, &sa_usr, NULL);
sigaction(SIGUSR2, &sa_usr, NULL);
printf("My PID is %d\n", getpid());
while(1)
{
if((n = read(STDIN_FILENO, buf, 511)) == -1)
{
if(errno == EINTR)
{
printf("read is interrupted by signal\n");
}
}
else
{
buf[n] = '\0';
printf("%d bytes read: %s\n", n, buf);
}
}
return 0;
}