2.机器学习相关数学基础

1)P2 概率论与贝叶斯先验

本福特定律是指一堆从实际生活得出的数据中,以1为首位数字的数的出现概率约为总数的三成,接近直觉得出之期望值1/9的3倍。

概率公式(23:44)

指数分布(48:30

 指数函数的一个重要特征是无记忆性。

 总结(60:49

 

方差(103:20

2)P3 矩阵和线性代数

代数余子式:n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。

 

QR分解:

 3)用自己的话总结“梯度”,“梯度下降”和“贝叶斯定理”

梯度的本意是一个向量,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向变化最快,变化率最大。

梯度下降:对于一个函数,希望找到使函数值达到全局最小的自变量值,通过不断地调整参数来寻找合适的目标值。

贝叶斯定理:贝叶斯定理是关于随机事件A和B的条件概率的一则定理

 

posted @ 2020-04-15 18:33  妮妮妮kk  阅读(125)  评论(0编辑  收藏  举报