《大话数据结构》笔记(6-3)--树:赫夫曼树

代码实现:
 
 
第六章    树:赫夫曼树
赫夫曼树定义与原理
从树中一个结点到另一个结点之间的分支构成两个结点之间的路径,路径上的分支数目称作路径长度
树的路径长度就是从树根到每一结点的路径长度之和。
 
对于带权的结点,结点的带权路径长度为从该结点到树根之间的路径长度与结点上权的乘积。
树的带权路径长度为树中所有叶子结点的带权路径长度之和。
 
假设有n个权值{w1, w2, ..., wn},构造一棵有n个叶子结点的二叉树,每个叶子结点带权wk ,每个叶子的路径长度为lk,则其中带权路径长度WPL最小的二叉树称作赫夫曼树(最有二叉树)。

 
赫夫曼树的构造
 
 
赫夫曼编码
若要设计长短不等的编码,则必须是任一字符的编码都不是其他编码的前缀,这种编码称作前缀编码
 
 
posted @   lyu0709  阅读(225)  评论(0编辑  收藏  举报
编辑推荐:
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
阅读排行:
· 《HelloGitHub》第 106 期
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 数据库服务器 SQL Server 版本升级公告
· 深入理解Mybatis分库分表执行原理
· 使用 Dify + LLM 构建精确任务处理应用
点击右上角即可分享
微信分享提示