unity3d shader之God Ray上帝之光

又是一个post-process后期效果。god ray 上帝之光,说起上帝之光就是咱们再看太阳时太阳周围一圈的针状光芒
先放组效果,本文的场景资源均来自浅墨大神,效果为本文shader效果




增加了前篇HDR和Bloom。效果大增:链接




本文的代码是来自unity圣典中某大神的分享,博主做了小小的改进 链接
然后就来做下解说,共同拥有两个shader,一个负责制造ray,一个负责和原屏幕图像混合,于原屏幕图像混合非常easy。就是单纯的把两个图像的颜色叠加。控制一下ray的权重,
接下来我们着重解说一下。制造ray的shader
是一个fragement shader
共同拥有4个外部变量
_ScreenLightPos屏幕上光线的位置,这个须要在c#脚本中计算并传出。稍后会解说
_Density密度
_Decay衰减
_Exposure曝光,用来控制亮度,大家都知道。在相机中,曝光时间越长图像越亮

先看vertex shader
	v2f vert(v2in v)
	{
		v2f o;
		o.pos = mul(UNITY_MATRIX_MVP, v.vertex);

		half2 texCoord = v.texcoord;
		half2 deltaTexCoord = texCoord - _ScreenLightPos.xy;
		deltaTexCoord *= 1.0f / 8 * _Density;

		texCoord -= deltaTexCoord;
		o.uv0 = texCoord;
		texCoord -= deltaTexCoord;
		o.uv1 = texCoord;
		texCoord -= deltaTexCoord;
		o.uv2 = texCoord;
		texCoord -= deltaTexCoord;
		o.uv3 = texCoord;
		texCoord -= deltaTexCoord;
		o.uv4 = texCoord;
		texCoord -= deltaTexCoord;
		o.uv5 = texCoord;
		texCoord -= deltaTexCoord;
		o.uv6 = texCoord;
		texCoord -= deltaTexCoord;
		o.uv7 = texCoord;
		return o;
	}

v.texcoord为当前点的坐标

deltaTexCoord为当前点对光源点的反向向量,长度为两点间距离

密度越大deltaTexCoord越大,不超过8,deltaTexCoord始终是个分数
第一个採样点为此处本来位置
採样点渐渐接进光源处
_Density越大採样点间距越大
从0到7,点的位置从光源处越来越近,离此处点越来越远
看看我们的v2f结构体。存了多少坐标点
	struct v2f {
		float4 pos : POSITION;
		float2 uv0 : TEXCOORD0;
		float2 uv1 : TEXCOORD1;
		float2 uv2 : TEXCOORD2;
		float2 uv3 : TEXCOORD3;
		float2 uv4 : TEXCOORD4;
		float2 uv5 : TEXCOORD5;
		float2 uv6 : TEXCOORD6;
		float2 uv7 : TEXCOORD7;
	};

传入值的结构体v2in

	struct v2in {
		float4 vertex : POSITION;
		float2 texcoord : TEXCOORD0;
	};


我们就得到了当前点到光源点的一条直线中的八个点的坐标。为fragement shader取色混色用
当然本步骤也可在fragement shader中完毕,但效率没有vertex shader好,由于不用每一个像素都取样。仅仅是每一个顶点取样就好

再看fragement shader


    half4 frag(v2f i) : COLOR
    {
        half illuminationDecay = 1.0f;


        half4 color = tex2D(_MainTex, i.uv0)*illuminationDecay;
        illuminationDecay *= _Decay;
        color += tex2D(_MainTex, i.uv1)*illuminationDecay;
        illuminationDecay *= _Decay;
        color += tex2D(_MainTex, i.uv2)*illuminationDecay;
        illuminationDecay *= _Decay;
        color += tex2D(_MainTex, i.uv3)*illuminationDecay;
        illuminationDecay *= _Decay;
        color += tex2D(_MainTex, i.uv4)*illuminationDecay;
        illuminationDecay *= _Decay;
        color += tex2D(_MainTex, i.uv5)*illuminationDecay;
        illuminationDecay *= _Decay;
        color += tex2D(_MainTex, i.uv6)*illuminationDecay;
        illuminationDecay *= _Decay;
        color += tex2D(_MainTex, i.uv7)*illuminationDecay;

        color /= 8;

        return half4(color.xyz * _Exposure, 1);

    }

illuminationDecay光照衰减。_Decay是我们外部可控衰减

_Exposure添加亮度

调整比重离此处像素点越远也就是离光源越近越衰减,可能有人会问,为什么会这样?由于我们还是要保留大部分为此处点的颜色,假设其它像素权重过大。则会造成此处点颜色不准确。甚至不好的模糊效果。


然后就是混色,基本上的原理就是从光源处打出无数条射线。嗯。能够这么理解。



Ray我们就制造好了,接下来我们须要把光线ray与原屏幕图像混合。这一步就比較简单了。仅仅给出源码。各位自己意会。



Shader "Custom/god ray 2 blend" {
		Properties{
		_MainTex("Base (RGB)", 2D) = "" {}
		_GodRayTex ("God (RGB)", 2D) = ""{}
		_Alpha("_Alpha", Float) = 0.5
	}



		// Shader code pasted into all further CGPROGRAM blocks
		CGINCLUDE

#include "UnityCG.cginc"

		struct v2in {
			float4 vertex : POSITION;
			float2 texcoord : TEXCOORD0;
		};

		struct v2f {
			float4 pos : POSITION;
			float2 uv : TEXCOORD0;
		};

		sampler2D _MainTex;

		sampler2D _GodRayTex;

		uniform float _Alpha;

		v2f vert(v2in v)
		{
			v2f o;
			o.pos = mul(UNITY_MATRIX_MVP, v.vertex);
			o.uv = v.texcoord;
			return o;
		}



		half4 frag(v2f i) : COLOR
		{
			half4 color = tex2D(_MainTex, i.uv) + tex2D(_GodRayTex, i.uv)*_Alpha;
			//half4 color = tex2D(_MainTex, i.uv);

			return color;
		}

		ENDCG

			Subshader{

			Tags{ "Queue" = "Transparent" }

			Pass{
				ZWrite Off

				BindChannels
				{
				Bind "Vertex", vertex
				Bind "texcoord", texcoord0
				Bind "texcoord1", texcoord1
			}

				Fog{ Mode off }
				CGPROGRAM
#pragma fragmentoption ARB_precision_hint_fastest 
#pragma vertex vert
#pragma fragment frag
					ENDCG
			}

		}

		Fallback off

	} // shader



然后就是最后一步。也是十分重要的一步就是通过脚本把它弄到屏幕上。
此处的要点就是要求出光源在屏幕中的位置,
Camera类中有这么一个函数能够把世界坐标转换为屏幕坐标
Camera.WorldToScreenPoint(position)
官网介绍例如以下
Transforms position from world space into screen space.
把position从世界坐标转换为屏幕坐标
Screenspace is defined in pixels. The bottom-left of the screen is (0,0); the right-top is (pixelWidth,pixelHeight). The z position is in world units from the camera.
左下角是屏幕坐标系的原点,右上角是屏幕的最大范围,超出这个范围的光源我们都不进行god ray渲染了,以此作为推断,否则就会进行错误渲染,屏幕超出光照范围了仍在闪烁。

我们把光源的transport传入脚本,然后检验光源的position
另外还有重要一点就是推断光源在相机前面还是在后面。假设仅仅推断是否在屏幕内的话,相机转到光源后面也会被渲染god ray,解决方法在此。WorldToScreenPoint返回的z值为世界空间内光源与相机的距离,为矢量,所以我们就能用z值正负来推断前后了,为正则光源在相机前可渲染god ray。为负则光源在相机后不可渲染god ray
if (lightScreenPos.z > 0 && lightScreenPos.x > 0 && lightScreenPos.x < camera.pixelWidth  && lightScreenPos.y >0 && lightScreenPos.y < camera.pixelHeight)
 
事实上就这么渲染也能够,可是效果并不好,god ray变成了“god point”,原因刚才分析的。shader的原理是取点到光源的八个点。那渲染的结果也就是出现了好多点,层次非常分明,就是由于之混乱和了那8次。解决方案就是多次渲染,点多了,就变成线了
我们要想使效果更好一点就要多次渲染
建立两个renderTexure tempRtA和tempRtB用来互相传值

                Graphics.Blit(sourceTexture, tempRtA, material);
第一次过滤结果存在tempRtA
传到下一次渲染做_MainTex
                Graphics.Blit(tempRtA, tempRtB, material);
再传出tempRtB到第三次渲染,再传出tempRtA。

。。


                Graphics.Blit(tempRtB, tempRtA, material);
                Graphics.Blit(tempRtA, tempRtB, material);
                Graphics.Blit(tempRtB, tempRtA, material);
最后做混合,把ray texture传到blend shader作为GodRayTex。然后得到终于结果
                materialBlend.SetTexture("_GodRayTex", tempRtA);
                Graphics.Blit(sourceTexture, destTexture, materialBlend, 0);

代码例如以下:

using UnityEngine;
using System.Collections;
[ExecuteInEditMode]
public class godRay2 : MonoBehaviour
{
    public Transform lightpos;
    public Shader curShader;
    public Shader curShaderblend;
    private Material curMaterial;
    private Material curMateriaBlend;
    public Vector4 ScreenLightPos = new Vector4(0, 0, 0, 0);
    public float Density = 0.01f;
    public float Decay = 0.5f;
    public float Exposure = 0.5f;
    public float Alpha = 1;
    public RenderTexture tempRtA = null;
    public RenderTexture tempRtB = null;

    private Vector3 lightScreenPos;
    #region Properties
    Material material
    {
        get
        {
            if (curMaterial == null)
            {
                curMaterial = new Material(curShader);
                curMaterial.hideFlags = HideFlags.HideAndDontSave;
            }
            return curMaterial;
        }
    }
    Material materialBlend
    {
        get
        {
            if (curMateriaBlend == null)
            {
                curMateriaBlend = new Material(curShaderblend);
                curMateriaBlend.hideFlags = HideFlags.HideAndDontSave;
            }
            return curMateriaBlend;
        }
    }
    #endregion

    void Start()
    {
        if (!SystemInfo.supportsImageEffects)
        {
            enabled = false;
            return;
        }

        if (!curShader && !curShader.isSupported)
        {
            enabled = false;
        }
    }

    void OnRenderImage(RenderTexture sourceTexture, RenderTexture destTexture)
    {

        if (curShader != null)
        {
            lightScreenPos = Camera.main.WorldToScreenPoint(lightpos.position);

            if (lightScreenPos.z > 0 && lightScreenPos.x > 0 && lightScreenPos.x < camera.pixelWidth  && lightScreenPos.y > 0 && lightScreenPos.y < camera.pixelHeight)
            {
                material.SetVector("ScreenLightPos", new Vector4(lightScreenPos.x / camera.pixelWidth, lightScreenPos.y / camera.pixelHeight, 0, 0));
                //   material.SetVector("ScreenLightPos", ScreenLightPos);
                material.SetFloat("Density", Density);
                material.SetFloat("Decay", Decay);
                material.SetFloat("Exposure", Exposure);
                materialBlend.SetFloat("Alpha", Alpha);
                CreateBuffers();
                Graphics.Blit(sourceTexture, tempRtA, material);
                Graphics.Blit(tempRtA, tempRtB, material);
                Graphics.Blit(tempRtB, tempRtA, material);
                Graphics.Blit(tempRtA, tempRtB, material);
                Graphics.Blit(tempRtB, tempRtA, material);

                materialBlend.SetTexture("_GodRayTex", tempRtA);
                Graphics.Blit(sourceTexture, destTexture, materialBlend, 0);
                //   Graphics.Blit(tempRtA, destTexture, material, 0);
            }
            else
            {
                Graphics.Blit(sourceTexture, destTexture);
            }
        }
        else
        {
            Graphics.Blit(sourceTexture, destTexture);
        }

    }

    void CreateBuffers()
    {
        if (!tempRtA)
        {
            tempRtA = new RenderTexture(Screen.width / 4, Screen.height / 4, 0);
            tempRtA.hideFlags = HideFlags.DontSave;
        }

        if (!tempRtB)
        {
            tempRtB = new RenderTexture(Screen.width / 4, Screen.height / 4, 0);
            tempRtB.hideFlags = HideFlags.DontSave;
        }
    }
    void OnDisable()
    {
        if (curMaterial)
        {
            DestroyImmediate(curMaterial);
        }
    }
}







本shader有几个缺点。在比較暗的场景不要使用,由于光源处不亮,所以效果不好,Ray的质量不高,从样例就能够看出来,Ray非常不清晰,此处能够和Unity ImageEffect的Sun shafts作比較

最后放上两组效果



林中闪耀的光芒





                                                  ------ by  wolf96 http://blog.csdn.net/wolf96


posted @ 2017-07-04 16:34  lytwajue  阅读(590)  评论(0编辑  收藏  举报