swift算法手记-7

    @IBAction func compute(sender: AnyObject) {
        //  19*x^7-31*x^5+16*x^2+7*x-90=0
        //  newton迭代法求一元方程的解,最大求解范围[-100000,100000]
       
     mytitle.stringValue="19*x^7-31*x^5+16*x^2+7*x-90=0"
        let trycount = 120
        var accuracy: Double = 1e-15
        var answer: Double?=nil
        
        // 预计解范围
        var leftbound:Double?=nil
        var rightbound:Double?

=nil for var bound:Double=1;bound<10000000;bound*=10{ let leftres=comresult(-bound) let rightres=comresult(bound) if (leftres*rightres) < 0 { leftbound = (-bound) rightbound = bound break } else if leftres==0{ answer=leftbound break } else if rightres==0{ answer=rightbound break } } if (leftbound==nil || rightbound==nil){ return } var center=leftbound!+(rightbound!-leftbound!)/2 let centres:Double=comresult(center) if centres==0 { answer=center } if centres*comresult(rightbound!)<0{ leftbound=center } else if centres*comresult(leftbound!)<0{ rightbound=center } if answer==nil{ //计算方程的解 var p0=leftbound!+(rightbound!-leftbound!)/2 var p:Double for i in 1...trycount{ p = newtoncompresult(p0) if abs(p-p0) < accuracy { answer=p0 break } p0=p } } if let ans=answer{ //方程有解 result.stringValue="解:"+String(stringInterpolationSegment: ans)+" " result.stringValue += "解代入方程的值:"+String(stringInterpolationSegment:comresult(ans)) } }


用牛顿迭代法解非线性方程





本博客全部内容是原创,假设转载请注明来源

http://blog.csdn.net/myhaspl/





posted @ 2017-06-20 14:05  lytwajue  阅读(135)  评论(0编辑  收藏  举报