数据结构-二叉树的遍历(类C语言描写叙述)

遍历概念

     所谓遍历(Traversal)是指沿着某条搜索路线。依次对树中每一个结点均做一次且仅做一次訪问。訪问结点所做的操作依赖于详细的应用问题。


     遍历是二叉树上最重要的运算之中的一个,是二叉树上进行其他运算之基础。

遍历方案

1.遍历方案
     从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此。在任一给定结点上,能够按某种次序运行三个操作:
     (1)訪问结点本身(N),
     (2)遍历该结点的左子树(L),
     (3)遍历该结点的右子树(R)。
以上三种操作有六种运行次序:
     NLR、LNR、LRN、NRL、RNL、RLN。


  注意:
     前三种次序与后三种次序对称。故仅仅讨论先左后右的前三种次序。



2.三种遍历的命名
     依据訪问结点操作发生位置命名:
  ① NLR:前序遍历(PreorderTraversal亦称(先序遍历))
         ——訪问结点的操作发生在遍历其左右子树之前。
  ② LNR:中序遍历(InorderTraversal)
        ——訪问结点的操作发生在遍历其左右子树之中(间)。


   ③ LRN:后序遍历(PostorderTraversal)
        ——訪问结点的操作发生在遍历其左右子树之后。
  注意:
     因为被訪问的结点必是某子树的根。所以N(Node)、L(Left subtlee)和R(Right subtree)又可解释为根、根的左子树和根的右子树。

NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。


遍历算法

1.中序遍历的递归算法定义:
     若二叉树非空。则依次运行例如以下操作:
         (1)遍历左子树。
         (2)訪问根结点;
         (3)遍历右子树。

2.先序遍历的递归算法定义:
    若二叉树非空,则依次运行例如以下操作:
         (1) 訪问根结点;
         (2) 遍历左子树;
         (3) 遍历右子树。



3.后序遍历得递归算法定义:
    若二叉树非空。则依次运行例如以下操作:
         (1)遍历左子树。
         (2)遍历右子树。
         (3)訪问根结点。

4.中序遍历的算法实现
     用二叉链表做为存储结构,中序遍历算法可描写叙述为:
      void InOrder(BinTree T)
        { //算法里①~⑥是为了说明运行过程增加的标号
          ① if(T) { // 假设二叉树非空
          ②    InOrder(T->lchild);
          ③    printf("%c",T->data)。 // 訪问结点
          ④    InOrder(T->rchild);
          ⑤  }
          ⑥ } // InOrder

posted @ 2017-05-21 20:42  lytwajue  阅读(458)  评论(0编辑  收藏  举报