POJ-3134-Power Calculus(迭代加深DFS)

Description

Starting with x and repeatedly multiplying by x, we can compute x31 with thirty multiplications:

x2 = x × xx3 = x2 × xx4 = x3 × x, …, x31 = x30 × x.

The operation of squaring can be appreciably shorten the sequence of multiplications. The following is a way to compute x31 with eight multiplications:

x2 = x × xx3 = x2 × xx6 = x3 × x3x7 = x6 × xx14 = x7 × x7x15 = x14 × xx30 = x15 × x15x31 = x30 × x.

This is not the shortest sequence of multiplications to compute x31. There are many ways with only seven multiplications. The following is one of them:

x2 = x × x, x4 = x2 × x2x8 = x4 × x4x8 = x4 × x4x10 = x8 × x2x20 = x10 × x10x30 = x20 × x10x31 = x30 × x.

If division is also available, we can find a even shorter sequence of operations. It is possible to compute x31 with six operations (five multiplications and one division):

x2 = x × xx4 = x2 × x2x8 = x4 × x4x16 = x8 × x8x32 = x16 × x16x31 = x32 ÷ x.

This is one of the most efficient ways to compute x31 if a division is as fast as a multiplication.

Your mission is to write a program to find the least number of operations to compute xn by multiplication and division starting with x for the given positive integer n. Products and quotients appearing in the sequence should be x to a positive integer’s power. In others words, x−3, for example, should never appear.

Input

The input is a sequence of one or more lines each containing a single integer nn is positive and less than or equal to 1000. The end of the input is indicated by a zero.

Output

Your program should print the least total number of multiplications and divisions required to compute xn starting with x for the integer n. The numbers should be written each in a separate line without any superfluous characters such as leading or trailing spaces.

Sample Input

1
31
70
91
473
512
811
953
0

Sample Output

0
6
8
9
11
9
13
12

Source


思路:用一个数组存每一次操作之后得到的数,剪下枝,迭代加深就可以。

详见代码。


#include <stdio.h>
#define max(A,B)(A>B?A:B)

int n,dep,num[15];

bool dfs(int cnt,int x)//x是上一次操作之后得到的最大的数
{
    if(num[cnt]==n) return 1;

    if(cnt>=dep) return 0;

    x=max(x,num[cnt]);

    if(x*(1<<(dep-cnt))<n) return 0;//假设最大的数都不能得到n就直接返回

    for(int i=0;i<=cnt;i++)
    {
        num[cnt+1]=num[cnt]+num[i];

        if(dfs(cnt+1,x)) return 1;

        if(num[cnt]>num[i]) num[cnt+1]=num[cnt]-num[i];
        else num[cnt+1]=num[i]-num[cnt];

        if(dfs(cnt+1,x)) return 1;
    }

    return 0;
}

int main()
{
    while(~scanf("%d",&n) && n)
    {
        if(n==1) printf("0\n");
        else
        {
            num[0]=1;

            for(dep=1;;dep++)
            {
                if(dfs(0,1)) break;
            }

            printf("%d\n",dep);
        }
    }
}



posted @ 2017-04-29 10:12  lytwajue  阅读(586)  评论(0编辑  收藏  举报