把博客园图标替换成自己的图标
把博客园图标替换成自己的图标end

AGC001F Wide Swap【思维·拓扑关系·权值线段树】

题意简述

你有一个长度为\(N\)的排列。将\(i\)\(j\)两个位置的数字交换的条件是:\(|i-j|>=k\)并且\(|Ai-Aj|=1\)
你可以进行无数次交换操作,输出操作后能够得到的最小的字典序的排列。

\(N≤5e5\)

分析

首先,第一步的转化就很不容易想到。

就是我们可以把数和下标进行调换。

定义反函数\(Q[A[i]]=i\),那么条件就可以转化为:相邻两个数满足差的绝对值大于等于\(k\)就可以进行交换。

这样我们就把交换的距离限定在了相邻的两个数之间,比较方便。

要求\(A[]\)的字典序最小,那么也就是\(Q[]\)的字典序最小。简单证明一下:

假设\(Q[]\)字典序最小的方案\(Q_a\)是:\(Q_1Q_2Q_3...Q_i...Q_n\)

\(A[]\)字典序最小的方案对应的\(Q_b\)是:\(Q_1Q_2Q_3...Q_i'...Q_n\)

这两个序列前面都是一样的,从第\(i\)位开始有区别,由于\(Q_a\)是所有\(Q[]\)中字典序最小的,所以\(Q_i<Q_i'\)。那么在\(Q_a\)方案对应的\(A[]\)中,\(i\)被放在了更前面的位置,由于\([1,i-1]\)的放置位置是一样的,所以\(Q_a\)方案更优。


所以现在我们的问题就变成了:对于数组\(Q[]\),相邻两个数满足差的绝对值大于等于\(k\)就可以进行交换,可以交换无数次,求字典序最小的结果。

我们发现这玩意儿有点像冒泡排序,我们想把大的往后面移,但是移动的条件是\(Q[i]-Q[i+1]≥k\)。我们可以发现,对于任意的\(i<j\),如果\(|Q[i]-Q[j]|<k\),那么这两个数的相对位置无法改变,哪怕中间可以把他们换到相邻,他们两个也会无法交换,也就是\(Q[i]\)一直会在\(Q[j]\)的前面。

这样就可以想到拓扑排序了,我们对于两个数\(i<j\),如果\(|Q[i]-Q[j]|\),那么就连一条\(i->j\)的单向边,表示\(Q[i]\)要在\(Q[j]\)的前面,按照拓扑序安排数的顺序,就符合条件。


但是这样做,边是\(O(n^2)\)的,所以复杂度很高。

我们注意到有些边可能是没用的,比如\(a->b,b->c\),那么\(a->c\)就是一个无用的约束条件。

所以就可以不连\(a->c\)那样的边,每个数连它右边最近的那个满足条件的点就可以了,这样约束关系就可以传递过去,而且每个点都最多只会有一个出度。

怎么找它右边最近的那个满足条件的点呢?用权值线段树维护。

Code View

#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<map>
using namespace std;
#define N 500005
#define INF 0x3f3f3f3f
#define LL long long
int rd()
{
	int x=0,f=1;char c=getchar();
	while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
	while(c>='0'&&c<='9'){x=(x<<3)+(x<<1)+(c^48); c=getchar();}
	return f*x;
}
priority_queue<int,vector<int>,greater<int> > Q;//小根堆 保证字典序最小 
int n,k,m;
int ind[N];
vector<int>G[N];
int q[N],ans[N];
int tree[N<<2];
//权值线段树 维护区间最小值(因为是从右到左 就是离他最近 
void PushUp(int i)
{
	tree[i]=min(tree[i<<1],tree[i<<1|1]);
}
void Update(int i,int l,int r,int pos,int val)
{
	if(l==r)
	{
		tree[i]=val;
		return ;
	}
	int mid=(l+r)>>1;
	if(pos<=mid) Update(i<<1,l,mid,pos,val);
	else Update(i<<1|1,mid+1,r,pos,val);
	PushUp(i);
}
int Query(int i,int l,int r,int ql,int qr)
{
	if(r<ql||qr<l) return INF;
	if(ql<=l&&qr>=r) return tree[i];
	int mid=(l+r)>>1;
	return min(Query(i<<1,l,mid,ql,qr),Query(i<<1|1,mid+1,r,ql,qr));
} 
void Topo()
{
	for(int i=1;i<=n;i++)
		if(!ind[i]) Q.push(i);
	while(!Q.empty())
	{
		int u=Q.top(); Q.pop();
		q[++m]=u;
		for(int i=0;i<G[u].size();i++)
		{
			int v=G[u][i];
			ind[v]--;
			if(!ind[v]) Q.push(v);
		}
	}
}
int main()
{
	memset(tree,INF,sizeof(tree));
	n=rd(),k=rd();
	for(int i=1;i<=n;i++)
		q[rd()]=i;
	for(int i=n;i>=1;i--)
	{
		int j=Query(1,1,n,q[i]+1,q[i]+k-1);//q[j]-q[i]<k
		if(j!=INF) ind[q[j]]++,G[q[i]].push_back(q[j]);
		j=Query(1,1,n,q[i]-k+1,q[i]-1);//q[i]-q[j]<k
		if(j!=INF) ind[q[j]]++,G[q[i]].push_back(q[j]);
		Update(1,1,n,q[i],i);
	}
	Topo();
	for(int i=1;i<=n;i++)
		ans[q[i]]=i;
	for(int i=1;i<=n;i++)
		printf("%d\n",ans[i]);
	return 0;
}

posted @ 2020-08-12 22:49  Starlight_Glimmer  阅读(120)  评论(0编辑  收藏  举报
浏览器标题切换
浏览器标题切换end