FlinkSql使用入门

flinkapi层次结构图

 

 

 

其中,flinksql处于flink最高层的api,相当于api来讲,用法更易理解,但是没有api灵活些,下面简单介绍下flinksql的简单应用。

flinksql样例

  备注:使用的是1.13.0版本

  消费kafka

    

CREATE TABLE bg_action (
    bg BIGINT,
    user_source BIGINT,
    uid   BIGINT,
    action VARCHAR,
    __ts BIGINT,
    actionp VARCHAR,
    actionp2 VARCHAR,
    actionp3 VARCHAR,
    actionp5 VARCHAR,
    actionp8 VARCHAR,
    actionp10 VARCHAR,
    t as if(__ts is null,cast(TIMESTAMPADD(HOUR,8,current_timestamp) as TIMESTAMP(3)),to_timestamp(from_unixtime(__ts/1000,'yyyy-MM-dd HH:mm:ss'))),
    watermark for t as t - interval '3' second
) WITH (
    'connector' = 'kafka', -- 使用 kafka connector
    'topic' = '***',  -- kafka topic
    'scan.startup.mode' = 'latest-offset', -- 从起始 offset 开始读取
    'properties.group.id' = '***',
    'properties.bootstrap.servers' = '***',
    'format' = 'json',
    'json.ignore-parse-errors' = 'true'
);

  查询

select action,t from bg_action;

 

   写入kafka

create table sink(
  action string
) with(
  'connector' = 'kafka',
  'topic' = '***',
  'properties.bootstrap.servers' = '***',
  'sink.partitioner' = 'round-robin',
  'format' = 'json'
); --定义sink表作为topic的输出

insert into sink
select action from bg_action

  当然,中间处理逻辑也可以通过view进行作为临时表映射。

 

posted @ 2022-07-21 21:31  Coding_Now  阅读(858)  评论(1编辑  收藏  举报