numpy的聚合运算及其索引和排序

一:常用的聚合运算有

(1)求和sum

(2)最大值max

(3)最小值min

(4)平均值average

(5)中位数median

(6)prod,对所有的元素进行乘积

(7)percentile:百分比

(8)var:方差

(9)std:标准差

二:代码举例说明

import numpy as np

L = np.random.random(1000000)
print("L = ",L)

print("sum = ",np.sum(L))

print("max = ",np.max(L))

print("min = ",np.min(L))

print("average = ",np.average(L))

print("median = ",np.median(L))

print("prod = ",np.prod(L))

print("percentile = ",np.percentile(L,50))

print("var = ",np.var(L))

print("std = ",np.std(L))


'''
L =  [0.83190736 0.74081446 0.48812662 ... 0.27353513 0.90351821 0.99799109]
sum =  499602.0936992654
max =  0.9999994792249605
min =  1.1307318972253455e-06
average =  0.4996020936992654
median =  0.49924280325258924
prod =  0.0
percentile =  0.49924280325258924
var =  0.0832567557942998
std =  0.2885424679216212
'''

 三:索引

import numpy as np

x = np.random.normal(0,1,size=1000000)
print(x)

print(np.min(x))
index_min = np.argmin(x)
print(x[index_min])

print(np.max(x))
index_max = np.argmax(x)
print(x[index_max])

四:排序及其索引

import numpy as np


arr = np.arange(10)
np.random.shuffle(arr)
print(arr)
print(np.sort(arr)) #从小到大排序,但是不改变原先的向量
print(np.argsort(arr))#打印的是从小到大的元素所在的下标

 五:partition

import numpy as np


arr = np.arange(10)
np.random.shuffle(arr)
print(arr)#[8 1 5 9 6 3 7 4 0 2]

print(np.partition(arr,4))#[1 3 2 0 4 5 6 7 9 8]

类似于快速排序,4就是我们所选的基数,4之前的都比4小,4之后的都比4大。

posted @ 2019-03-30 16:11  Coding_Now  阅读(457)  评论(0编辑  收藏  举报