luogu P1217 [USACO1.5]回文质数 Prime Palindromes

 

题目描述

因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数。

写一个程序来找出范围[a,b](5 <= a < b <= 100,000,000)( 一亿)间的所有回文质数;

输入输出格式

输入格式:

第 1 行: 二个整数 a 和 b .

输出格式:

输出一个回文质数的列表,一行一个。

输入输出样例

输入样例#1:
5 500
输出样例#1:
5
7
11
101
131
151
181
191
313
353
373
383

说明

Hint 1: Generate the palindromes and see if they are prime.

提示 1: 找出所有的回文数再判断它们是不是质数(素数).

Hint 2: Generate palindromes by combining digits properly. You might need more than one of the loops like below.

提示 2: 要产生正确的回文数,你可能需要几个像下面这样的循环。

题目翻译来自NOCOW。

T掉一个点:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>

using namespace std;

int n,m;
char s[15];
bool vis[100000001];

inline int read()
{
    int x=0;char c=getchar();
    while(c<'0'||c>'9')c=getchar();
    while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();
    return x;
}

void make()                   
{
    vis[1]=1;  
    vis[0]=1;
    int q=(int)sqrt(m)+1;
    for (int i=2;i<=q;i++)
        if (!vis[i])
            for (int j=i*2;j<=m;j+=i)
                vis[j]=1;
}

inline bool go_on(int x)
{
    sprintf(s,"%d",x);
    int len=strlen(s);
    if(len==1)
        return 1;
    for(int i=0;i<len>>1-1;i++)
        if(s[i]!=s[len-i-1])
            return 0;
    return 1;
}

int main()
{
    n=read();
    m=read();
    make();
    for(int i=n;i<=m;i++)
    {
        if(!vis[i]&&go_on(i))
            printf("%d\n",i);
    }
    return 0;
}
#include<cmath>
#include<cstdio>
#include<cstring>
int main()
{
    long a,b,d;
    bool palindrome(long);
    bool prime(long);
    scanf("%ld %ld",&a,&b);                //输入给定区间下限a(a≥5)和上限b(b≤100000000)
    a+=!(a%2);                            //给定区间内不可能存在偶质数
    b=b>9999999?9999999:b;                //给定区间内不可能存在八位数以上的回文质数
    for(d=a;d<=b;d+=2)
        if(palindrome(d) && prime(d))
            printf("%ld\n",d);            //输出给定区间[a,b]内的所有回文质数
    return 0;
}
bool palindrome(long d)                    //该函数用于判断一个自然数d是否为回文数
{
    char _d[10],j=0,k;
    sprintf(_d,"%ld",d);                //将d转换为字符串_d
    k=strlen(_d)-1;
    while(j<k)
        if(_d[j++]!=_d[k--])
            return false;
    return true;
}
bool prime(long p)                        //该函数用于判断一个大于1的自然数p是否为质数
{
    int _p;
    for(_p=2;_p<=sqrt(p);_p++)
        if(!(p%_p))
            return false;
    return true;
}

 

posted @ 2017-07-06 20:57  ioioioioioio  阅读(188)  评论(0编辑  收藏  举报