开始

python科学计算_numpy_函数库

1.常规函数与排序

常用统计函数:

求和:sum()、均值:mean()、标准差:std()、方差:var()、最小值:min()、最大值:max()、最大值与最小值之差:ptp()、最大值的下标:argmax()、最小值的下标:argmin()、中值:median()

上述函数都可以指定axis,来沿着某一轴操作;除了mean()函数求均值,还可以使用average(),并且可以指定weights参数来指定权值,计算加权平均;argmax()和argmin()如果不指定axis参数,则返回平坦化后的下标;

排序函数:sort()、argsort();数组的sort()方法会对数组本身进行改变,而sort()函数则不会;sort默认axis=-1,即沿着最后一个轴进行排序;sort()函数返回一个新的排序后的数组而argsort()则返回排序后的下标数组,如:

import numpy as np
a = np.random.randint(0,10,size=(4,5))

array([[8, 2, 0, 3, 7],
[7, 0, 2, 7, 4],
[1, 8, 1, 1, 2],
[4, 6, 2, 1, 4]])

a.sort()   #此时a数组会改变为排序后的数组;

a1 = np.sort(a)   #此时a数组不变,得到的a1数组为:

array([[0, 2, 3, 7, 8],
[0, 2, 4, 7, 7],
[1, 1, 1, 2, 8],
[1, 2, 4, 4, 6]])

# 即沿着-1轴排序后的结果

idx = np.argsort(a) 

idx

array([[2, 1, 3, 4, 0],
[1, 2, 4, 0, 3],
[0, 2, 3, 4, 1],
[3, 2, 0, 4, 1]])

此时,虽然idx.shape = (4,5),但是并不能直接使用a[idx]得到排序后的数组,因为idx是数组,所以numpy会在后面补:,等效于:a[idx,:],idx数组中的每个值访问a数组的0轴,当idx中的值超过a的0轴长度之后就会产生错误:IndexError: index 4 is out of bounds for axis 0 with size 4;所以使用idx来访问a得到排序后的数组,需要产生0轴的下标,通过np.ogrid对象可以生成:

x,_ = np.ogrid[:a.shape[0],:a.shape[1]]

右边的表达式生成a数组的grid,即各个轴的下标数组,取第一个元素即得到a数组的0轴下标数组:

array([[0],
[1],
[2],
[3]])

通过a[x,idx]可以正确访问到排序后的数组

2. 多项式函数

多项式函数是只包含加法和乘法,对一个变量的各次幂进行加法和乘法操作的函数:

f(x) = a[n]*x^n + a[n-1]*x^(n-1) + … + a[2]*x^2 + a[1]*x + a[0]

numpy中通过将变量x的各次幂(从高到底的顺序)系数即可表示一个多项式函数:

a = np.array([1.0,0,-2,1])

p = np.poly1d(a)

p是一个poly1d对象,此对象可以像函数一样调用,并且返回多项式的值,并且是一个ufunc对象,即可以以数组作为参数,得到相应的多项式值的数组;

poly1d对象可以进行四则运算,分别对应于多项式的四则运算,除法运算时,会返回包含两个值的元组,其中第一个值为商多项式(商式),第二个值为余数多项式(余式);

poly1d对象可以进行积分:deriv()和微分:integ()操作,得到新的多项式;

使用np.roots()函数,可以对多项式进行求根:

r = np.roots(p)

array([-1.61803399,  1.        ,  0.61803399])

使用np.poly()函数,可以将根转回多项式的系数:

np.poly(r)

array([ 1.00000000e+00, -1.22124533e-15, -2.00000000e+00,
1.00000000e+00])

使用np.polyfit()函数,可以对一组数据进行多项式拟合:

import matplotlib.pyplot as plt
plt.figure(figsize=(8,4))
for deg in [3,5,7]:
    a = np.polyfit(x,y,deg)
    error = np.abs(np.polyval(a,x)-y)
    plt.plot(error)
plt.ylim(0,0.0001)
plt.show()

NewImage 

3.分段函数

通过三个函数实现分段操作:where()、select()、piecewise()

where(condition,x,y)函数类似于三目操作符,当condition为真时,返回x,否则返回y;如果x和y的形状不一致,则通过广播统一形状;

当分段的数量比较多时,where()函数写起来就比较复杂,select(condlist, choicelist)函数,通过一个长度为N的布尔数组列表,choicelist则是一个长度为N的存储候选值的数组列表,其中所有数组长度为M;

condlist可以形象地理解为多个分段的条件,N为分段的数量;choicelist则是每种条件下的取值,用if-elif-else表现为:

if condlist[0] :
    choicelist[0]
elif condlist[1]:
    choicelist[1]
elif condlist[2]:
    choicelist[2]

等;

piecewise(x, condlist, funclist)函数是为了避免当分段比较多时,需要用很多的数组来存储分段结构,piecewise()函数可以直接通过分段列表计算出结果,而不需要中间的分段数组;和select()参数不同的是,funclist是一个函数列表,分别对应condlist中的条件执行;

4.统计函数

unique()函数返回参数数组中所有不同的值,并按照从小到大排序,相当于linux中的sort -u 命令;该函数有两个可选参数:

return_index: True 表示同时返回原始数组的下标;

return_inverse :True 表示同时返回重建原始数组用的下标数组;

bincount()函数统计整数数组中各个元素出现的次数(参数数组中所有的元素必须为非负数),返回数组中的第i个元素表示整数i在参数数组中出现的个数。

histogram(a, bins=10, range=None, normed=False, weights=None)函数对一维数组进行直方图统计;该函数返回两个一维数组:hist和bin_edges;

histogram2d()、histogramdd()对二维数组和n维数组进行直方图统计

 


 

 

posted @ 2015-08-18 00:53  Lyon2014  阅读(2128)  评论(0编辑  收藏  举报