博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

pandas学习

Posted on 2019-08-04 22:03  lyhcc  阅读(186)  评论(0编辑  收藏  举报

pandas学习

查找某个内容,使用Ctrl+f输入关键字查找

Series

import numpy as np
import pandas as pd
# 可以将Series理解为一个数组
# pandas.Series( data, index, dtype, copy)
# data 数据采取各种形式,如:ndarray,list,constants
# index 索引值必须是唯一的和散列的,与数据的长度相同。 默认np.arange(n)如果没有索引被传递
# dtype dtype用于数据类型。如果没有,将推断数据类型
# copy 复制数据,默认为false
# 数据源可以是数组、字典、常量、标量
# 创建一个空Series
s = pd.Series()
print(s)
Series([], dtype: float64)
# 获取numpy.array函数的帮助说明
help(np.array([]))
Help on ndarray object:

class ndarray(builtins.object)
 |  ndarray(shape, dtype=float, buffer=None, offset=0,
 |          strides=None, order=None)
 |  
 |  An array object represents a multidimensional, homogeneous array
 |  of fixed-size items.  An associated data-type object describes the
 |  format of each element in the array (its byte-order, how many bytes it
 |  occupies in memory, whether it is an integer, a floating point number,
 |  or something else, etc.)
 |  
 |  Arrays should be constructed using `array`, `zeros` or `empty` (refer
 |  to the See Also section below).  The parameters given here refer to
 |  a low-level method (`ndarray(...)`) for instantiating an array.
 |  
 |  For more information, refer to the `numpy` module and examine the
 |  methods and attributes of an array.
 |  
 |  Parameters
 |  ----------
 |  (for the __new__ method; see Notes below)
 |  
 |  shape : tuple of ints
 |      Shape of created array.
 |  dtype : data-type, optional
 |      Any object that can be interpreted as a numpy data type.
 |  buffer : object exposing buffer interface, optional
 |      Used to fill the array with data.
 |  offset : int, optional
 |      Offset of array data in buffer.
 |  strides : tuple of ints, optional
 |      Strides of data in memory.
 |  order : {'C', 'F'}, optional
 |      Row-major (C-style) or column-major (Fortran-style) order.
 |  
 |  Attributes
 |  ----------
 |  T : ndarray
 |      Transpose of the array.
 |  data : buffer
 |      The array's elements, in memory.
 |  dtype : dtype object
 |      Describes the format of the elements in the array.
 |  flags : dict
 |      Dictionary containing information related to memory use, e.g.,
 |      'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
 |  flat : numpy.flatiter object
 |      Flattened version of the array as an iterator.  The iterator
 |      allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for
 |      assignment examples; TODO).
 |  imag : ndarray
 |      Imaginary part of the array.
 |  real : ndarray
 |      Real part of the array.
 |  size : int
 |      Number of elements in the array.
 |  itemsize : int
 |      The memory use of each array element in bytes.
 |  nbytes : int
 |      The total number of bytes required to store the array data,
 |      i.e., ``itemsize * size``.
 |  ndim : int
 |      The array's number of dimensions.
 |  shape : tuple of ints
 |      Shape of the array.
 |  strides : tuple of ints
 |      The step-size required to move from one element to the next in
 |      memory. For example, a contiguous ``(3, 4)`` array of type
 |      ``int16`` in C-order has strides ``(8, 2)``.  This implies that
 |      to move from element to element in memory requires jumps of 2 bytes.
 |      To move from row-to-row, one needs to jump 8 bytes at a time
 |      (``2 * 4``).
 |  ctypes : ctypes object
 |      Class containing properties of the array needed for interaction
 |      with ctypes.
 |  base : ndarray
 |      If the array is a view into another array, that array is its `base`
 |      (unless that array is also a view).  The `base` array is where the
 |      array data is actually stored.
 |  
 |  See Also
 |  --------
 |  array : Construct an array.
 |  zeros : Create an array, each element of which is zero.
 |  empty : Create an array, but leave its allocated memory unchanged (i.e.,
 |          it contains "garbage").
 |  dtype : Create a data-type.
 |  
 |  Notes
 |  -----
 |  There are two modes of creating an array using ``__new__``:
 |  
 |  1. If `buffer` is None, then only `shape`, `dtype`, and `order`
 |     are used.
 |  2. If `buffer` is an object exposing the buffer interface, then
 |     all keywords are interpreted.
 |  
 |  No ``__init__`` method is needed because the array is fully initialized
 |  after the ``__new__`` method.
 |  
 |  Examples
 |  --------
 |  These examples illustrate the low-level `ndarray` constructor.  Refer
 |  to the `See Also` section above for easier ways of constructing an
 |  ndarray.
 |  
 |  First mode, `buffer` is None:
 |  
 |  >>> np.ndarray(shape=(2,2), dtype=float, order='F')
 |  array([[0.0e+000, 0.0e+000], # random
 |         [     nan, 2.5e-323]])
 |  
 |  Second mode:
 |  
 |  >>> np.ndarray((2,), buffer=np.array([1,2,3]),
 |  ...            offset=np.int_().itemsize,
 |  ...            dtype=int) # offset = 1*itemsize, i.e. skip first element
 |  array([2, 3])
 |  
 |  Methods defined here:
 |  
 |  __abs__(self, /)
 |      abs(self)
 |  
 |  __add__(self, value, /)
 |      Return self+value.
 |  
 |  __and__(self, value, /)
 |      Return self&value.
 |  
 |  __array__(...)
 |      a.__array__(|dtype) -> reference if type unchanged, copy otherwise.
 |      
 |      Returns either a new reference to self if dtype is not given or a new array
 |      of provided data type if dtype is different from the current dtype of the
 |      array.
 |  
 |  __array_function__(...)
 |  
 |  __array_prepare__(...)
 |      a.__array_prepare__(obj) -> Object of same type as ndarray object obj.
 |  
 |  __array_ufunc__(...)
 |  
 |  __array_wrap__(...)
 |      a.__array_wrap__(obj) -> Object of same type as ndarray object a.
 |  
 |  __bool__(self, /)
 |      self != 0
 |  
 |  __complex__(...)
 |  
 |  __contains__(self, key, /)
 |      Return key in self.
 |  
 |  __copy__(...)
 |      a.__copy__()
 |      
 |      Used if :func:`copy.copy` is called on an array. Returns a copy of the array.
 |      
 |      Equivalent to ``a.copy(order='K')``.
 |  
 |  __deepcopy__(...)
 |      a.__deepcopy__(memo, /) -> Deep copy of array.
 |      
 |      Used if :func:`copy.deepcopy` is called on an array.
 |  
 |  __delitem__(self, key, /)
 |      Delete self[key].
 |  
 |  __divmod__(self, value, /)
 |      Return divmod(self, value).
 |  
 |  __eq__(self, value, /)
 |      Return self==value.
 |  
 |  __float__(self, /)
 |      float(self)
 |  
 |  __floordiv__(self, value, /)
 |      Return self//value.
 |  
 |  __format__(...)
 |      Default object formatter.
 |  
 |  __ge__(self, value, /)
 |      Return self>=value.
 |  
 |  __getitem__(self, key, /)
 |      Return self[key].
 |  
 |  __gt__(self, value, /)
 |      Return self>value.
 |  
 |  __iadd__(self, value, /)
 |      Return self+=value.
 |  
 |  __iand__(self, value, /)
 |      Return self&=value.
 |  
 |  __ifloordiv__(self, value, /)
 |      Return self//=value.
 |  
 |  __ilshift__(self, value, /)
 |      Return self<<=value.
 |  
 |  __imatmul__(self, value, /)
 |      Return self@=value.
 |  
 |  __imod__(self, value, /)
 |      Return self%=value.
 |  
 |  __imul__(self, value, /)
 |      Return self*=value.
 |  
 |  __index__(self, /)
 |      Return self converted to an integer, if self is suitable for use as an index into a list.
 |  
 |  __int__(self, /)
 |      int(self)
 |  
 |  __invert__(self, /)
 |      ~self
 |  
 |  __ior__(self, value, /)
 |      Return self|=value.
 |  
 |  __ipow__(self, value, /)
 |      Return self**=value.
 |  
 |  __irshift__(self, value, /)
 |      Return self>>=value.
 |  
 |  __isub__(self, value, /)
 |      Return self-=value.
 |  
 |  __iter__(self, /)
 |      Implement iter(self).
 |  
 |  __itruediv__(self, value, /)
 |      Return self/=value.
 |  
 |  __ixor__(self, value, /)
 |      Return self^=value.
 |  
 |  __le__(self, value, /)
 |      Return self<=value.
 |  
 |  __len__(self, /)
 |      Return len(self).
 |  
 |  __lshift__(self, value, /)
 |      Return self<<value.
 |  
 |  __lt__(self, value, /)
 |      Return self<value.
 |  
 |  __matmul__(self, value, /)
 |      Return self@value.
 |  
 |  __mod__(self, value, /)
 |      Return self%value.
 |  
 |  __mul__(self, value, /)
 |      Return self*value.
 |  
 |  __ne__(self, value, /)
 |      Return self!=value.
 |  
 |  __neg__(self, /)
 |      -self
 |  
 |  __or__(self, value, /)
 |      Return self|value.
 |  
 |  __pos__(self, /)
 |      +self
 |  
 |  __pow__(self, value, mod=None, /)
 |      Return pow(self, value, mod).
 |  
 |  __radd__(self, value, /)
 |      Return value+self.
 |  
 |  __rand__(self, value, /)
 |      Return value&self.
 |  
 |  __rdivmod__(self, value, /)
 |      Return divmod(value, self).
 |  
 |  __reduce__(...)
 |      a.__reduce__()
 |      
 |      For pickling.
 |  
 |  __reduce_ex__(...)
 |      Helper for pickle.
 |  
 |  __repr__(self, /)
 |      Return repr(self).
 |  
 |  __rfloordiv__(self, value, /)
 |      Return value//self.
 |  
 |  __rlshift__(self, value, /)
 |      Return value<<self.
 |  
 |  __rmatmul__(self, value, /)
 |      Return value@self.
 |  
 |  __rmod__(self, value, /)
 |      Return value%self.
 |  
 |  __rmul__(self, value, /)
 |      Return value*self.
 |  
 |  __ror__(self, value, /)
 |      Return value|self.
 |  
 |  __rpow__(self, value, mod=None, /)
 |      Return pow(value, self, mod).
 |  
 |  __rrshift__(self, value, /)
 |      Return value>>self.
 |  
 |  __rshift__(self, value, /)
 |      Return self>>value.
 |  
 |  __rsub__(self, value, /)
 |      Return value-self.
 |  
 |  __rtruediv__(self, value, /)
 |      Return value/self.
 |  
 |  __rxor__(self, value, /)
 |      Return value^self.
 |  
 |  __setitem__(self, key, value, /)
 |      Set self[key] to value.
 |  
 |  __setstate__(...)
 |      a.__setstate__(state, /)
 |      
 |      For unpickling.
 |      
 |      The `state` argument must be a sequence that contains the following
 |      elements:
 |      
 |      Parameters
 |      ----------
 |      version : int
 |          optional pickle version. If omitted defaults to 0.
 |      shape : tuple
 |      dtype : data-type
 |      isFortran : bool
 |      rawdata : string or list
 |          a binary string with the data (or a list if 'a' is an object array)
 |  
 |  __sizeof__(...)
 |      Size of object in memory, in bytes.
 |  
 |  __str__(self, /)
 |      Return str(self).
 |  
 |  __sub__(self, value, /)
 |      Return self-value.
 |  
 |  __truediv__(self, value, /)
 |      Return self/value.
 |  
 |  __xor__(self, value, /)
 |      Return self^value.
 |  
 |  all(...)
 |      a.all(axis=None, out=None, keepdims=False)
 |      
 |      Returns True if all elements evaluate to True.
 |      
 |      Refer to `numpy.all` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.all : equivalent function
 |  
 |  any(...)
 |      a.any(axis=None, out=None, keepdims=False)
 |      
 |      Returns True if any of the elements of `a` evaluate to True.
 |      
 |      Refer to `numpy.any` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.any : equivalent function
 |  
 |  argmax(...)
 |      a.argmax(axis=None, out=None)
 |      
 |      Return indices of the maximum values along the given axis.
 |      
 |      Refer to `numpy.argmax` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.argmax : equivalent function
 |  
 |  argmin(...)
 |      a.argmin(axis=None, out=None)
 |      
 |      Return indices of the minimum values along the given axis of `a`.
 |      
 |      Refer to `numpy.argmin` for detailed documentation.
 |      
 |      See Also
 |      --------
 |      numpy.argmin : equivalent function
 |  
 |  argpartition(...)
 |      a.argpartition(kth, axis=-1, kind='introselect', order=None)
 |      
 |      Returns the indices that would partition this array.
 |      
 |      Refer to `numpy.argpartition` for full documentation.
 |      
 |      .. versionadded:: 1.8.0
 |      
 |      See Also
 |      --------
 |      numpy.argpartition : equivalent function
 |  
 |  argsort(...)
 |      a.argsort(axis=-1, kind=None, order=None)
 |      
 |      Returns the indices that would sort this array.
 |      
 |      Refer to `numpy.argsort` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.argsort : equivalent function
 |  
 |  astype(...)
 |      a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)
 |      
 |      Copy of the array, cast to a specified type.
 |      
 |      Parameters
 |      ----------
 |      dtype : str or dtype
 |          Typecode or data-type to which the array is cast.
 |      order : {'C', 'F', 'A', 'K'}, optional
 |          Controls the memory layout order of the result.
 |          'C' means C order, 'F' means Fortran order, 'A'
 |          means 'F' order if all the arrays are Fortran contiguous,
 |          'C' order otherwise, and 'K' means as close to the
 |          order the array elements appear in memory as possible.
 |          Default is 'K'.
 |      casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
 |          Controls what kind of data casting may occur. Defaults to 'unsafe'
 |          for backwards compatibility.
 |      
 |            * 'no' means the data types should not be cast at all.
 |            * 'equiv' means only byte-order changes are allowed.
 |            * 'safe' means only casts which can preserve values are allowed.
 |            * 'same_kind' means only safe casts or casts within a kind,
 |              like float64 to float32, are allowed.
 |            * 'unsafe' means any data conversions may be done.
 |      subok : bool, optional
 |          If True, then sub-classes will be passed-through (default), otherwise
 |          the returned array will be forced to be a base-class array.
 |      copy : bool, optional
 |          By default, astype always returns a newly allocated array. If this
 |          is set to false, and the `dtype`, `order`, and `subok`
 |          requirements are satisfied, the input array is returned instead
 |          of a copy.
 |      
 |      Returns
 |      -------
 |      arr_t : ndarray
 |          Unless `copy` is False and the other conditions for returning the input
 |          array are satisfied (see description for `copy` input parameter), `arr_t`
 |          is a new array of the same shape as the input array, with dtype, order
 |          given by `dtype`, `order`.
 |      
 |      Notes
 |      -----
 |      .. versionchanged:: 1.17.0
 |         Casting between a simple data type and a structured one is possible only
 |         for "unsafe" casting.  Casting to multiple fields is allowed, but
 |         casting from multiple fields is not.
 |      
 |      .. versionchanged:: 1.9.0
 |         Casting from numeric to string types in 'safe' casting mode requires
 |         that the string dtype length is long enough to store the max
 |         integer/float value converted.
 |      
 |      Raises
 |      ------
 |      ComplexWarning
 |          When casting from complex to float or int. To avoid this,
 |          one should use ``a.real.astype(t)``.
 |      
 |      Examples
 |      --------
 |      >>> x = np.array([1, 2, 2.5])
 |      >>> x
 |      array([1. ,  2. ,  2.5])
 |      
 |      >>> x.astype(int)
 |      array([1, 2, 2])
 |  
 |  byteswap(...)
 |      a.byteswap(inplace=False)
 |      
 |      Swap the bytes of the array elements
 |      
 |      Toggle between low-endian and big-endian data representation by
 |      returning a byteswapped array, optionally swapped in-place.
 |      
 |      Parameters
 |      ----------
 |      inplace : bool, optional
 |          If ``True``, swap bytes in-place, default is ``False``.
 |      
 |      Returns
 |      -------
 |      out : ndarray
 |          The byteswapped array. If `inplace` is ``True``, this is
 |          a view to self.
 |      
 |      Examples
 |      --------
 |      >>> A = np.array([1, 256, 8755], dtype=np.int16)
 |      >>> list(map(hex, A))
 |      ['0x1', '0x100', '0x2233']
 |      >>> A.byteswap(inplace=True)
 |      array([  256,     1, 13090], dtype=int16)
 |      >>> list(map(hex, A))
 |      ['0x100', '0x1', '0x3322']
 |      
 |      Arrays of strings are not swapped
 |      
 |      >>> A = np.array(['ceg', 'fac'])
 |      >>> A.byteswap()
 |      Traceback (most recent call last):
 |          ...
 |      UnicodeDecodeError: ...
 |  
 |  choose(...)
 |      a.choose(choices, out=None, mode='raise')
 |      
 |      Use an index array to construct a new array from a set of choices.
 |      
 |      Refer to `numpy.choose` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.choose : equivalent function
 |  
 |  clip(...)
 |      a.clip(min=None, max=None, out=None, **kwargs)
 |      
 |      Return an array whose values are limited to ``[min, max]``.
 |      One of max or min must be given.
 |      
 |      Refer to `numpy.clip` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.clip : equivalent function
 |  
 |  compress(...)
 |      a.compress(condition, axis=None, out=None)
 |      
 |      Return selected slices of this array along given axis.
 |      
 |      Refer to `numpy.compress` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.compress : equivalent function
 |  
 |  conj(...)
 |      a.conj()
 |      
 |      Complex-conjugate all elements.
 |      
 |      Refer to `numpy.conjugate` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.conjugate : equivalent function
 |  
 |  conjugate(...)
 |      a.conjugate()
 |      
 |      Return the complex conjugate, element-wise.
 |      
 |      Refer to `numpy.conjugate` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.conjugate : equivalent function
 |  
 |  copy(...)
 |      a.copy(order='C')
 |      
 |      Return a copy of the array.
 |      
 |      Parameters
 |      ----------
 |      order : {'C', 'F', 'A', 'K'}, optional
 |          Controls the memory layout of the copy. 'C' means C-order,
 |          'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
 |          'C' otherwise. 'K' means match the layout of `a` as closely
 |          as possible. (Note that this function and :func:`numpy.copy` are very
 |          similar, but have different default values for their order=
 |          arguments.)
 |      
 |      See also
 |      --------
 |      numpy.copy
 |      numpy.copyto
 |      
 |      Examples
 |      --------
 |      >>> x = np.array([[1,2,3],[4,5,6]], order='F')
 |      
 |      >>> y = x.copy()
 |      
 |      >>> x.fill(0)
 |      
 |      >>> x
 |      array([[0, 0, 0],
 |             [0, 0, 0]])
 |      
 |      >>> y
 |      array([[1, 2, 3],
 |             [4, 5, 6]])
 |      
 |      >>> y.flags['C_CONTIGUOUS']
 |      True
 |  
 |  cumprod(...)
 |      a.cumprod(axis=None, dtype=None, out=None)
 |      
 |      Return the cumulative product of the elements along the given axis.
 |      
 |      Refer to `numpy.cumprod` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.cumprod : equivalent function
 |  
 |  cumsum(...)
 |      a.cumsum(axis=None, dtype=None, out=None)
 |      
 |      Return the cumulative sum of the elements along the given axis.
 |      
 |      Refer to `numpy.cumsum` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.cumsum : equivalent function
 |  
 |  diagonal(...)
 |      a.diagonal(offset=0, axis1=0, axis2=1)
 |      
 |      Return specified diagonals. In NumPy 1.9 the returned array is a
 |      read-only view instead of a copy as in previous NumPy versions.  In
 |      a future version the read-only restriction will be removed.
 |      
 |      Refer to :func:`numpy.diagonal` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.diagonal : equivalent function
 |  
 |  dot(...)
 |      a.dot(b, out=None)
 |      
 |      Dot product of two arrays.
 |      
 |      Refer to `numpy.dot` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.dot : equivalent function
 |      
 |      Examples
 |      --------
 |      >>> a = np.eye(2)
 |      >>> b = np.ones((2, 2)) * 2
 |      >>> a.dot(b)
 |      array([[2.,  2.],
 |             [2.,  2.]])
 |      
 |      This array method can be conveniently chained:
 |      
 |      >>> a.dot(b).dot(b)
 |      array([[8.,  8.],
 |             [8.,  8.]])
 |  
 |  dump(...)
 |      a.dump(file)
 |      
 |      Dump a pickle of the array to the specified file.
 |      The array can be read back with pickle.load or numpy.load.
 |      
 |      Parameters
 |      ----------
 |      file : str or Path
 |          A string naming the dump file.
 |      
 |          .. versionchanged:: 1.17.0
 |              `pathlib.Path` objects are now accepted.
 |  
 |  dumps(...)
 |      a.dumps()
 |      
 |      Returns the pickle of the array as a string.
 |      pickle.loads or numpy.loads will convert the string back to an array.
 |      
 |      Parameters
 |      ----------
 |      None
 |  
 |  fill(...)
 |      a.fill(value)
 |      
 |      Fill the array with a scalar value.
 |      
 |      Parameters
 |      ----------
 |      value : scalar
 |          All elements of `a` will be assigned this value.
 |      
 |      Examples
 |      --------
 |      >>> a = np.array([1, 2])
 |      >>> a.fill(0)
 |      >>> a
 |      array([0, 0])
 |      >>> a = np.empty(2)
 |      >>> a.fill(1)
 |      >>> a
 |      array([1.,  1.])
 |  
 |  flatten(...)
 |      a.flatten(order='C')
 |      
 |      Return a copy of the array collapsed into one dimension.
 |      
 |      Parameters
 |      ----------
 |      order : {'C', 'F', 'A', 'K'}, optional
 |          'C' means to flatten in row-major (C-style) order.
 |          'F' means to flatten in column-major (Fortran-
 |          style) order. 'A' means to flatten in column-major
 |          order if `a` is Fortran *contiguous* in memory,
 |          row-major order otherwise. 'K' means to flatten
 |          `a` in the order the elements occur in memory.
 |          The default is 'C'.
 |      
 |      Returns
 |      -------
 |      y : ndarray
 |          A copy of the input array, flattened to one dimension.
 |      
 |      See Also
 |      --------
 |      ravel : Return a flattened array.
 |      flat : A 1-D flat iterator over the array.
 |      
 |      Examples
 |      --------
 |      >>> a = np.array([[1,2], [3,4]])
 |      >>> a.flatten()
 |      array([1, 2, 3, 4])
 |      >>> a.flatten('F')
 |      array([1, 3, 2, 4])
 |  
 |  getfield(...)
 |      a.getfield(dtype, offset=0)
 |      
 |      Returns a field of the given array as a certain type.
 |      
 |      A field is a view of the array data with a given data-type. The values in
 |      the view are determined by the given type and the offset into the current
 |      array in bytes. The offset needs to be such that the view dtype fits in the
 |      array dtype; for example an array of dtype complex128 has 16-byte elements.
 |      If taking a view with a 32-bit integer (4 bytes), the offset needs to be
 |      between 0 and 12 bytes.
 |      
 |      Parameters
 |      ----------
 |      dtype : str or dtype
 |          The data type of the view. The dtype size of the view can not be larger
 |          than that of the array itself.
 |      offset : int
 |          Number of bytes to skip before beginning the element view.
 |      
 |      Examples
 |      --------
 |      >>> x = np.diag([1.+1.j]*2)
 |      >>> x[1, 1] = 2 + 4.j
 |      >>> x
 |      array([[1.+1.j,  0.+0.j],
 |             [0.+0.j,  2.+4.j]])
 |      >>> x.getfield(np.float64)
 |      array([[1.,  0.],
 |             [0.,  2.]])
 |      
 |      By choosing an offset of 8 bytes we can select the complex part of the
 |      array for our view:
 |      
 |      >>> x.getfield(np.float64, offset=8)
 |      array([[1.,  0.],
 |             [0.,  4.]])
 |  
 |  item(...)
 |      a.item(*args)
 |      
 |      Copy an element of an array to a standard Python scalar and return it.
 |      
 |      Parameters
 |      ----------
 |      \*args : Arguments (variable number and type)
 |      
 |          * none: in this case, the method only works for arrays
 |            with one element (`a.size == 1`), which element is
 |            copied into a standard Python scalar object and returned.
 |      
 |          * int_type: this argument is interpreted as a flat index into
 |            the array, specifying which element to copy and return.
 |      
 |          * tuple of int_types: functions as does a single int_type argument,
 |            except that the argument is interpreted as an nd-index into the
 |            array.
 |      
 |      Returns
 |      -------
 |      z : Standard Python scalar object
 |          A copy of the specified element of the array as a suitable
 |          Python scalar
 |      
 |      Notes
 |      -----
 |      When the data type of `a` is longdouble or clongdouble, item() returns
 |      a scalar array object because there is no available Python scalar that
 |      would not lose information. Void arrays return a buffer object for item(),
 |      unless fields are defined, in which case a tuple is returned.
 |      
 |      `item` is very similar to a[args], except, instead of an array scalar,
 |      a standard Python scalar is returned. This can be useful for speeding up
 |      access to elements of the array and doing arithmetic on elements of the
 |      array using Python's optimized math.
 |      
 |      Examples
 |      --------
 |      >>> np.random.seed(123)
 |      >>> x = np.random.randint(9, size=(3, 3))
 |      >>> x
 |      array([[2, 2, 6],
 |             [1, 3, 6],
 |             [1, 0, 1]])
 |      >>> x.item(3)
 |      1
 |      >>> x.item(7)
 |      0
 |      >>> x.item((0, 1))
 |      2
 |      >>> x.item((2, 2))
 |      1
 |  
 |  itemset(...)
 |      a.itemset(*args)
 |      
 |      Insert scalar into an array (scalar is cast to array's dtype, if possible)
 |      
 |      There must be at least 1 argument, and define the last argument
 |      as *item*.  Then, ``a.itemset(*args)`` is equivalent to but faster
 |      than ``a[args] = item``.  The item should be a scalar value and `args`
 |      must select a single item in the array `a`.
 |      
 |      Parameters
 |      ----------
 |      \*args : Arguments
 |          If one argument: a scalar, only used in case `a` is of size 1.
 |          If two arguments: the last argument is the value to be set
 |          and must be a scalar, the first argument specifies a single array
 |          element location. It is either an int or a tuple.
 |      
 |      Notes
 |      -----
 |      Compared to indexing syntax, `itemset` provides some speed increase
 |      for placing a scalar into a particular location in an `ndarray`,
 |      if you must do this.  However, generally this is discouraged:
 |      among other problems, it complicates the appearance of the code.
 |      Also, when using `itemset` (and `item`) inside a loop, be sure
 |      to assign the methods to a local variable to avoid the attribute
 |      look-up at each loop iteration.
 |      
 |      Examples
 |      --------
 |      >>> np.random.seed(123)
 |      >>> x = np.random.randint(9, size=(3, 3))
 |      >>> x
 |      array([[2, 2, 6],
 |             [1, 3, 6],
 |             [1, 0, 1]])
 |      >>> x.itemset(4, 0)
 |      >>> x.itemset((2, 2), 9)
 |      >>> x
 |      array([[2, 2, 6],
 |             [1, 0, 6],
 |             [1, 0, 9]])
 |  
 |  max(...)
 |      a.max(axis=None, out=None, keepdims=False, initial=<no value>, where=True)
 |      
 |      Return the maximum along a given axis.
 |      
 |      Refer to `numpy.amax` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.amax : equivalent function
 |  
 |  mean(...)
 |      a.mean(axis=None, dtype=None, out=None, keepdims=False)
 |      
 |      Returns the average of the array elements along given axis.
 |      
 |      Refer to `numpy.mean` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.mean : equivalent function
 |  
 |  min(...)
 |      a.min(axis=None, out=None, keepdims=False, initial=<no value>, where=True)
 |      
 |      Return the minimum along a given axis.
 |      
 |      Refer to `numpy.amin` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.amin : equivalent function
 |  
 |  newbyteorder(...)
 |      arr.newbyteorder(new_order='S')
 |      
 |      Return the array with the same data viewed with a different byte order.
 |      
 |      Equivalent to::
 |      
 |          arr.view(arr.dtype.newbytorder(new_order))
 |      
 |      Changes are also made in all fields and sub-arrays of the array data
 |      type.
 |      
 |      
 |      
 |      Parameters
 |      ----------
 |      new_order : string, optional
 |          Byte order to force; a value from the byte order specifications
 |          below. `new_order` codes can be any of:
 |      
 |          * 'S' - swap dtype from current to opposite endian
 |          * {'<', 'L'} - little endian
 |          * {'>', 'B'} - big endian
 |          * {'=', 'N'} - native order
 |          * {'|', 'I'} - ignore (no change to byte order)
 |      
 |          The default value ('S') results in swapping the current
 |          byte order. The code does a case-insensitive check on the first
 |          letter of `new_order` for the alternatives above.  For example,
 |          any of 'B' or 'b' or 'biggish' are valid to specify big-endian.
 |      
 |      
 |      Returns
 |      -------
 |      new_arr : array
 |          New array object with the dtype reflecting given change to the
 |          byte order.
 |  
 |  nonzero(...)
 |      a.nonzero()
 |      
 |      Return the indices of the elements that are non-zero.
 |      
 |      Refer to `numpy.nonzero` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.nonzero : equivalent function
 |  
 |  partition(...)
 |      a.partition(kth, axis=-1, kind='introselect', order=None)
 |      
 |      Rearranges the elements in the array in such a way that the value of the
 |      element in kth position is in the position it would be in a sorted array.
 |      All elements smaller than the kth element are moved before this element and
 |      all equal or greater are moved behind it. The ordering of the elements in
 |      the two partitions is undefined.
 |      
 |      .. versionadded:: 1.8.0
 |      
 |      Parameters
 |      ----------
 |      kth : int or sequence of ints
 |          Element index to partition by. The kth element value will be in its
 |          final sorted position and all smaller elements will be moved before it
 |          and all equal or greater elements behind it.
 |          The order of all elements in the partitions is undefined.
 |          If provided with a sequence of kth it will partition all elements
 |          indexed by kth of them into their sorted position at once.
 |      axis : int, optional
 |          Axis along which to sort. Default is -1, which means sort along the
 |          last axis.
 |      kind : {'introselect'}, optional
 |          Selection algorithm. Default is 'introselect'.
 |      order : str or list of str, optional
 |          When `a` is an array with fields defined, this argument specifies
 |          which fields to compare first, second, etc. A single field can
 |          be specified as a string, and not all fields need to be specified,
 |          but unspecified fields will still be used, in the order in which
 |          they come up in the dtype, to break ties.
 |      
 |      See Also
 |      --------
 |      numpy.partition : Return a parititioned copy of an array.
 |      argpartition : Indirect partition.
 |      sort : Full sort.
 |      
 |      Notes
 |      -----
 |      See ``np.partition`` for notes on the different algorithms.
 |      
 |      Examples
 |      --------
 |      >>> a = np.array([3, 4, 2, 1])
 |      >>> a.partition(3)
 |      >>> a
 |      array([2, 1, 3, 4])
 |      
 |      >>> a.partition((1, 3))
 |      >>> a
 |      array([1, 2, 3, 4])
 |  
 |  prod(...)
 |      a.prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)
 |      
 |      Return the product of the array elements over the given axis
 |      
 |      Refer to `numpy.prod` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.prod : equivalent function
 |  
 |  ptp(...)
 |      a.ptp(axis=None, out=None, keepdims=False)
 |      
 |      Peak to peak (maximum - minimum) value along a given axis.
 |      
 |      Refer to `numpy.ptp` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.ptp : equivalent function
 |  
 |  put(...)
 |      a.put(indices, values, mode='raise')
 |      
 |      Set ``a.flat[n] = values[n]`` for all `n` in indices.
 |      
 |      Refer to `numpy.put` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.put : equivalent function
 |  
 |  ravel(...)
 |      a.ravel([order])
 |      
 |      Return a flattened array.
 |      
 |      Refer to `numpy.ravel` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.ravel : equivalent function
 |      
 |      ndarray.flat : a flat iterator on the array.
 |  
 |  repeat(...)
 |      a.repeat(repeats, axis=None)
 |      
 |      Repeat elements of an array.
 |      
 |      Refer to `numpy.repeat` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.repeat : equivalent function
 |  
 |  reshape(...)
 |      a.reshape(shape, order='C')
 |      
 |      Returns an array containing the same data with a new shape.
 |      
 |      Refer to `numpy.reshape` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.reshape : equivalent function
 |      
 |      Notes
 |      -----
 |      Unlike the free function `numpy.reshape`, this method on `ndarray` allows
 |      the elements of the shape parameter to be passed in as separate arguments.
 |      For example, ``a.reshape(10, 11)`` is equivalent to
 |      ``a.reshape((10, 11))``.
 |  
 |  resize(...)
 |      a.resize(new_shape, refcheck=True)
 |      
 |      Change shape and size of array in-place.
 |      
 |      Parameters
 |      ----------
 |      new_shape : tuple of ints, or `n` ints
 |          Shape of resized array.
 |      refcheck : bool, optional
 |          If False, reference count will not be checked. Default is True.
 |      
 |      Returns
 |      -------
 |      None
 |      
 |      Raises
 |      ------
 |      ValueError
 |          If `a` does not own its own data or references or views to it exist,
 |          and the data memory must be changed.
 |          PyPy only: will always raise if the data memory must be changed, since
 |          there is no reliable way to determine if references or views to it
 |          exist.
 |      
 |      SystemError
 |          If the `order` keyword argument is specified. This behaviour is a
 |          bug in NumPy.
 |      
 |      See Also
 |      --------
 |      resize : Return a new array with the specified shape.
 |      
 |      Notes
 |      -----
 |      This reallocates space for the data area if necessary.
 |      
 |      Only contiguous arrays (data elements consecutive in memory) can be
 |      resized.
 |      
 |      The purpose of the reference count check is to make sure you
 |      do not use this array as a buffer for another Python object and then
 |      reallocate the memory. However, reference counts can increase in
 |      other ways so if you are sure that you have not shared the memory
 |      for this array with another Python object, then you may safely set
 |      `refcheck` to False.
 |      
 |      Examples
 |      --------
 |      Shrinking an array: array is flattened (in the order that the data are
 |      stored in memory), resized, and reshaped:
 |      
 |      >>> a = np.array([[0, 1], [2, 3]], order='C')
 |      >>> a.resize((2, 1))
 |      >>> a
 |      array([[0],
 |             [1]])
 |      
 |      >>> a = np.array([[0, 1], [2, 3]], order='F')
 |      >>> a.resize((2, 1))
 |      >>> a
 |      array([[0],
 |             [2]])
 |      
 |      Enlarging an array: as above, but missing entries are filled with zeros:
 |      
 |      >>> b = np.array([[0, 1], [2, 3]])
 |      >>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
 |      >>> b
 |      array([[0, 1, 2],
 |             [3, 0, 0]])
 |      
 |      Referencing an array prevents resizing...
 |      
 |      >>> c = a
 |      >>> a.resize((1, 1))
 |      Traceback (most recent call last):
 |      ...
 |      ValueError: cannot resize an array that references or is referenced ...
 |      
 |      Unless `refcheck` is False:
 |      
 |      >>> a.resize((1, 1), refcheck=False)
 |      >>> a
 |      array([[0]])
 |      >>> c
 |      array([[0]])
 |  
 |  round(...)
 |      a.round(decimals=0, out=None)
 |      
 |      Return `a` with each element rounded to the given number of decimals.
 |      
 |      Refer to `numpy.around` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.around : equivalent function
 |  
 |  searchsorted(...)
 |      a.searchsorted(v, side='left', sorter=None)
 |      
 |      Find indices where elements of v should be inserted in a to maintain order.
 |      
 |      For full documentation, see `numpy.searchsorted`
 |      
 |      See Also
 |      --------
 |      numpy.searchsorted : equivalent function
 |  
 |  setfield(...)
 |      a.setfield(val, dtype, offset=0)
 |      
 |      Put a value into a specified place in a field defined by a data-type.
 |      
 |      Place `val` into `a`'s field defined by `dtype` and beginning `offset`
 |      bytes into the field.
 |      
 |      Parameters
 |      ----------
 |      val : object
 |          Value to be placed in field.
 |      dtype : dtype object
 |          Data-type of the field in which to place `val`.
 |      offset : int, optional
 |          The number of bytes into the field at which to place `val`.
 |      
 |      Returns
 |      -------
 |      None
 |      
 |      See Also
 |      --------
 |      getfield
 |      
 |      Examples
 |      --------
 |      >>> x = np.eye(3)
 |      >>> x.getfield(np.float64)
 |      array([[1.,  0.,  0.],
 |             [0.,  1.,  0.],
 |             [0.,  0.,  1.]])
 |      >>> x.setfield(3, np.int32)
 |      >>> x.getfield(np.int32)
 |      array([[3, 3, 3],
 |             [3, 3, 3],
 |             [3, 3, 3]], dtype=int32)
 |      >>> x
 |      array([[1.0e+000, 1.5e-323, 1.5e-323],
 |             [1.5e-323, 1.0e+000, 1.5e-323],
 |             [1.5e-323, 1.5e-323, 1.0e+000]])
 |      >>> x.setfield(np.eye(3), np.int32)
 |      >>> x
 |      array([[1.,  0.,  0.],
 |             [0.,  1.,  0.],
 |             [0.,  0.,  1.]])
 |  
 |  setflags(...)
 |      a.setflags(write=None, align=None, uic=None)
 |      
 |      Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY),
 |      respectively.
 |      
 |      These Boolean-valued flags affect how numpy interprets the memory
 |      area used by `a` (see Notes below). The ALIGNED flag can only
 |      be set to True if the data is actually aligned according to the type.
 |      The WRITEBACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set
 |      to True. The flag WRITEABLE can only be set to True if the array owns its
 |      own memory, or the ultimate owner of the memory exposes a writeable buffer
 |      interface, or is a string. (The exception for string is made so that
 |      unpickling can be done without copying memory.)
 |      
 |      Parameters
 |      ----------
 |      write : bool, optional
 |          Describes whether or not `a` can be written to.
 |      align : bool, optional
 |          Describes whether or not `a` is aligned properly for its type.
 |      uic : bool, optional
 |          Describes whether or not `a` is a copy of another "base" array.
 |      
 |      Notes
 |      -----
 |      Array flags provide information about how the memory area used
 |      for the array is to be interpreted. There are 7 Boolean flags
 |      in use, only four of which can be changed by the user:
 |      WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED.
 |      
 |      WRITEABLE (W) the data area can be written to;
 |      
 |      ALIGNED (A) the data and strides are aligned appropriately for the hardware
 |      (as determined by the compiler);
 |      
 |      UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;
 |      
 |      WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced
 |      by .base). When the C-API function PyArray_ResolveWritebackIfCopy is
 |      called, the base array will be updated with the contents of this array.
 |      
 |      All flags can be accessed using the single (upper case) letter as well
 |      as the full name.
 |      
 |      Examples
 |      --------
 |      >>> y = np.array([[3, 1, 7],
 |      ...               [2, 0, 0],
 |      ...               [8, 5, 9]])
 |      >>> y
 |      array([[3, 1, 7],
 |             [2, 0, 0],
 |             [8, 5, 9]])
 |      >>> y.flags
 |        C_CONTIGUOUS : True
 |        F_CONTIGUOUS : False
 |        OWNDATA : True
 |        WRITEABLE : True
 |        ALIGNED : True
 |        WRITEBACKIFCOPY : False
 |        UPDATEIFCOPY : False
 |      >>> y.setflags(write=0, align=0)
 |      >>> y.flags
 |        C_CONTIGUOUS : True
 |        F_CONTIGUOUS : False
 |        OWNDATA : True
 |        WRITEABLE : False
 |        ALIGNED : False
 |        WRITEBACKIFCOPY : False
 |        UPDATEIFCOPY : False
 |      >>> y.setflags(uic=1)
 |      Traceback (most recent call last):
 |        File "<stdin>", line 1, in <module>
 |      ValueError: cannot set WRITEBACKIFCOPY flag to True
 |  
 |  sort(...)
 |      a.sort(axis=-1, kind=None, order=None)
 |      
 |      Sort an array in-place. Refer to `numpy.sort` for full documentation.
 |      
 |      Parameters
 |      ----------
 |      axis : int, optional
 |          Axis along which to sort. Default is -1, which means sort along the
 |          last axis.
 |      kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
 |          Sorting algorithm. The default is 'quicksort'. Note that both 'stable'
 |          and 'mergesort' use timsort under the covers and, in general, the
 |          actual implementation will vary with datatype. The 'mergesort' option
 |          is retained for backwards compatibility.
 |      
 |          .. versionchanged:: 1.15.0.
 |             The 'stable' option was added.
 |      
 |      order : str or list of str, optional
 |          When `a` is an array with fields defined, this argument specifies
 |          which fields to compare first, second, etc.  A single field can
 |          be specified as a string, and not all fields need be specified,
 |          but unspecified fields will still be used, in the order in which
 |          they come up in the dtype, to break ties.
 |      
 |      See Also
 |      --------
 |      numpy.sort : Return a sorted copy of an array.
 |      argsort : Indirect sort.
 |      lexsort : Indirect stable sort on multiple keys.
 |      searchsorted : Find elements in sorted array.
 |      partition: Partial sort.
 |      
 |      Notes
 |      -----
 |      See `numpy.sort` for notes on the different sorting algorithms.
 |      
 |      Examples
 |      --------
 |      >>> a = np.array([[1,4], [3,1]])
 |      >>> a.sort(axis=1)
 |      >>> a
 |      array([[1, 4],
 |             [1, 3]])
 |      >>> a.sort(axis=0)
 |      >>> a
 |      array([[1, 3],
 |             [1, 4]])
 |      
 |      Use the `order` keyword to specify a field to use when sorting a
 |      structured array:
 |      
 |      >>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
 |      >>> a.sort(order='y')
 |      >>> a
 |      array([(b'c', 1), (b'a', 2)],
 |            dtype=[('x', 'S1'), ('y', '<i8')])
 |  
 |  squeeze(...)
 |      a.squeeze(axis=None)
 |      
 |      Remove single-dimensional entries from the shape of `a`.
 |      
 |      Refer to `numpy.squeeze` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.squeeze : equivalent function
 |  
 |  std(...)
 |      a.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
 |      
 |      Returns the standard deviation of the array elements along given axis.
 |      
 |      Refer to `numpy.std` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.std : equivalent function
 |  
 |  sum(...)
 |      a.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)
 |      
 |      Return the sum of the array elements over the given axis.
 |      
 |      Refer to `numpy.sum` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.sum : equivalent function
 |  
 |  swapaxes(...)
 |      a.swapaxes(axis1, axis2)
 |      
 |      Return a view of the array with `axis1` and `axis2` interchanged.
 |      
 |      Refer to `numpy.swapaxes` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.swapaxes : equivalent function
 |  
 |  take(...)
 |      a.take(indices, axis=None, out=None, mode='raise')
 |      
 |      Return an array formed from the elements of `a` at the given indices.
 |      
 |      Refer to `numpy.take` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.take : equivalent function
 |  
 |  tobytes(...)
 |      a.tobytes(order='C')
 |      
 |      Construct Python bytes containing the raw data bytes in the array.
 |      
 |      Constructs Python bytes showing a copy of the raw contents of
 |      data memory. The bytes object can be produced in either 'C' or 'Fortran',
 |      or 'Any' order (the default is 'C'-order). 'Any' order means C-order
 |      unless the F_CONTIGUOUS flag in the array is set, in which case it
 |      means 'Fortran' order.
 |      
 |      .. versionadded:: 1.9.0
 |      
 |      Parameters
 |      ----------
 |      order : {'C', 'F', None}, optional
 |          Order of the data for multidimensional arrays:
 |          C, Fortran, or the same as for the original array.
 |      
 |      Returns
 |      -------
 |      s : bytes
 |          Python bytes exhibiting a copy of `a`'s raw data.
 |      
 |      Examples
 |      --------
 |      >>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
 |      >>> x.tobytes()
 |      b'\x00\x00\x01\x00\x02\x00\x03\x00'
 |      >>> x.tobytes('C') == x.tobytes()
 |      True
 |      >>> x.tobytes('F')
 |      b'\x00\x00\x02\x00\x01\x00\x03\x00'
 |  
 |  tofile(...)
 |      a.tofile(fid, sep="", format="%s")
 |      
 |      Write array to a file as text or binary (default).
 |      
 |      Data is always written in 'C' order, independent of the order of `a`.
 |      The data produced by this method can be recovered using the function
 |      fromfile().
 |      
 |      Parameters
 |      ----------
 |      fid : file or str or Path
 |          An open file object, or a string containing a filename.
 |      
 |          .. versionchanged:: 1.17.0
 |              `pathlib.Path` objects are now accepted.
 |      
 |      sep : str
 |          Separator between array items for text output.
 |          If "" (empty), a binary file is written, equivalent to
 |          ``file.write(a.tobytes())``.
 |      format : str
 |          Format string for text file output.
 |          Each entry in the array is formatted to text by first converting
 |          it to the closest Python type, and then using "format" % item.
 |      
 |      Notes
 |      -----
 |      This is a convenience function for quick storage of array data.
 |      Information on endianness and precision is lost, so this method is not a
 |      good choice for files intended to archive data or transport data between
 |      machines with different endianness. Some of these problems can be overcome
 |      by outputting the data as text files, at the expense of speed and file
 |      size.
 |      
 |      When fid is a file object, array contents are directly written to the
 |      file, bypassing the file object's ``write`` method. As a result, tofile
 |      cannot be used with files objects supporting compression (e.g., GzipFile)
 |      or file-like objects that do not support ``fileno()`` (e.g., BytesIO).
 |  
 |  tolist(...)
 |      a.tolist()
 |      
 |      Return the array as an ``a.ndim``-levels deep nested list of Python scalars.
 |      
 |      Return a copy of the array data as a (nested) Python list.
 |      Data items are converted to the nearest compatible builtin Python type, via
 |      the `~numpy.ndarray.item` function.
 |      
 |      If ``a.ndim`` is 0, then since the depth of the nested list is 0, it will
 |      not be a list at all, but a simple Python scalar.
 |      
 |      Parameters
 |      ----------
 |      none
 |      
 |      Returns
 |      -------
 |      y : object, or list of object, or list of list of object, or ...
 |          The possibly nested list of array elements.
 |      
 |      Notes
 |      -----
 |      The array may be recreated via ``a = np.array(a.tolist())``, although this
 |      may sometimes lose precision.
 |      
 |      Examples
 |      --------
 |      For a 1D array, ``a.tolist()`` is almost the same as ``list(a)``:
 |      
 |      >>> a = np.array([1, 2])
 |      >>> list(a)
 |      [1, 2]
 |      >>> a.tolist()
 |      [1, 2]
 |      
 |      However, for a 2D array, ``tolist`` applies recursively:
 |      
 |      >>> a = np.array([[1, 2], [3, 4]])
 |      >>> list(a)
 |      [array([1, 2]), array([3, 4])]
 |      >>> a.tolist()
 |      [[1, 2], [3, 4]]
 |      
 |      The base case for this recursion is a 0D array:
 |      
 |      >>> a = np.array(1)
 |      >>> list(a)
 |      Traceback (most recent call last):
 |        ...
 |      TypeError: iteration over a 0-d array
 |      >>> a.tolist()
 |      1
 |  
 |  tostring(...)
 |      a.tostring(order='C')
 |      
 |      Construct Python bytes containing the raw data bytes in the array.
 |      
 |      Constructs Python bytes showing a copy of the raw contents of
 |      data memory. The bytes object can be produced in either 'C' or 'Fortran',
 |      or 'Any' order (the default is 'C'-order). 'Any' order means C-order
 |      unless the F_CONTIGUOUS flag in the array is set, in which case it
 |      means 'Fortran' order.
 |      
 |      This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.
 |      
 |      Parameters
 |      ----------
 |      order : {'C', 'F', None}, optional
 |          Order of the data for multidimensional arrays:
 |          C, Fortran, or the same as for the original array.
 |      
 |      Returns
 |      -------
 |      s : bytes
 |          Python bytes exhibiting a copy of `a`'s raw data.
 |      
 |      Examples
 |      --------
 |      >>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
 |      >>> x.tobytes()
 |      b'\x00\x00\x01\x00\x02\x00\x03\x00'
 |      >>> x.tobytes('C') == x.tobytes()
 |      True
 |      >>> x.tobytes('F')
 |      b'\x00\x00\x02\x00\x01\x00\x03\x00'
 |  
 |  trace(...)
 |      a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
 |      
 |      Return the sum along diagonals of the array.
 |      
 |      Refer to `numpy.trace` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.trace : equivalent function
 |  
 |  transpose(...)
 |      a.transpose(*axes)
 |      
 |      Returns a view of the array with axes transposed.
 |      
 |      For a 1-D array this has no effect, as a transposed vector is simply the
 |      same vector. To convert a 1-D array into a 2D column vector, an additional
 |      dimension must be added. `np.atleast2d(a).T` achieves this, as does
 |      `a[:, np.newaxis]`.
 |      For a 2-D array, this is a standard matrix transpose.
 |      For an n-D array, if axes are given, their order indicates how the
 |      axes are permuted (see Examples). If axes are not provided and
 |      ``a.shape = (i[0], i[1], ... i[n-2], i[n-1])``, then
 |      ``a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0])``.
 |      
 |      Parameters
 |      ----------
 |      axes : None, tuple of ints, or `n` ints
 |      
 |       * None or no argument: reverses the order of the axes.
 |      
 |       * tuple of ints: `i` in the `j`-th place in the tuple means `a`'s
 |         `i`-th axis becomes `a.transpose()`'s `j`-th axis.
 |      
 |       * `n` ints: same as an n-tuple of the same ints (this form is
 |         intended simply as a "convenience" alternative to the tuple form)
 |      
 |      Returns
 |      -------
 |      out : ndarray
 |          View of `a`, with axes suitably permuted.
 |      
 |      See Also
 |      --------
 |      ndarray.T : Array property returning the array transposed.
 |      ndarray.reshape : Give a new shape to an array without changing its data.
 |      
 |      Examples
 |      --------
 |      >>> a = np.array([[1, 2], [3, 4]])
 |      >>> a
 |      array([[1, 2],
 |             [3, 4]])
 |      >>> a.transpose()
 |      array([[1, 3],
 |             [2, 4]])
 |      >>> a.transpose((1, 0))
 |      array([[1, 3],
 |             [2, 4]])
 |      >>> a.transpose(1, 0)
 |      array([[1, 3],
 |             [2, 4]])
 |  
 |  var(...)
 |      a.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
 |      
 |      Returns the variance of the array elements, along given axis.
 |      
 |      Refer to `numpy.var` for full documentation.
 |      
 |      See Also
 |      --------
 |      numpy.var : equivalent function
 |  
 |  view(...)
 |      a.view(dtype=None, type=None)
 |      
 |      New view of array with the same data.
 |      
 |      Parameters
 |      ----------
 |      dtype : data-type or ndarray sub-class, optional
 |          Data-type descriptor of the returned view, e.g., float32 or int16. The
 |          default, None, results in the view having the same data-type as `a`.
 |          This argument can also be specified as an ndarray sub-class, which
 |          then specifies the type of the returned object (this is equivalent to
 |          setting the ``type`` parameter).
 |      type : Python type, optional
 |          Type of the returned view, e.g., ndarray or matrix.  Again, the
 |          default None results in type preservation.
 |      
 |      Notes
 |      -----
 |      ``a.view()`` is used two different ways:
 |      
 |      ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view
 |      of the array's memory with a different data-type.  This can cause a
 |      reinterpretation of the bytes of memory.
 |      
 |      ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just
 |      returns an instance of `ndarray_subclass` that looks at the same array
 |      (same shape, dtype, etc.)  This does not cause a reinterpretation of the
 |      memory.
 |      
 |      For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of
 |      bytes per entry than the previous dtype (for example, converting a
 |      regular array to a structured array), then the behavior of the view
 |      cannot be predicted just from the superficial appearance of ``a`` (shown
 |      by ``print(a)``). It also depends on exactly how ``a`` is stored in
 |      memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus
 |      defined as a slice or transpose, etc., the view may give different
 |      results.
 |      
 |      
 |      Examples
 |      --------
 |      >>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
 |      
 |      Viewing array data using a different type and dtype:
 |      
 |      >>> y = x.view(dtype=np.int16, type=np.matrix)
 |      >>> y
 |      matrix([[513]], dtype=int16)
 |      >>> print(type(y))
 |      <class 'numpy.matrix'>
 |      
 |      Creating a view on a structured array so it can be used in calculations
 |      
 |      >>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
 |      >>> xv = x.view(dtype=np.int8).reshape(-1,2)
 |      >>> xv
 |      array([[1, 2],
 |             [3, 4]], dtype=int8)
 |      >>> xv.mean(0)
 |      array([2.,  3.])
 |      
 |      Making changes to the view changes the underlying array
 |      
 |      >>> xv[0,1] = 20
 |      >>> x
 |      array([(1, 20), (3,  4)], dtype=[('a', 'i1'), ('b', 'i1')])
 |      
 |      Using a view to convert an array to a recarray:
 |      
 |      >>> z = x.view(np.recarray)
 |      >>> z.a
 |      array([1, 3], dtype=int8)
 |      
 |      Views share data:
 |      
 |      >>> x[0] = (9, 10)
 |      >>> z[0]
 |      (9, 10)
 |      
 |      Views that change the dtype size (bytes per entry) should normally be
 |      avoided on arrays defined by slices, transposes, fortran-ordering, etc.:
 |      
 |      >>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
 |      >>> y = x[:, 0:2]
 |      >>> y
 |      array([[1, 2],
 |             [4, 5]], dtype=int16)
 |      >>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
 |      Traceback (most recent call last):
 |          ...
 |      ValueError: To change to a dtype of a different size, the array must be C-contiguous
 |      >>> z = y.copy()
 |      >>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
 |      array([[(1, 2)],
 |             [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])
 |  
 |  ----------------------------------------------------------------------
 |  Static methods defined here:
 |  
 |  __new__(*args, **kwargs) from builtins.type
 |      Create and return a new object.  See help(type) for accurate signature.
 |  
 |  ----------------------------------------------------------------------
 |  Data descriptors defined here:
 |  
 |  T
 |      The transposed array.
 |      
 |      Same as ``self.transpose()``.
 |      
 |      Examples
 |      --------
 |      >>> x = np.array([[1.,2.],[3.,4.]])
 |      >>> x
 |      array([[ 1.,  2.],
 |             [ 3.,  4.]])
 |      >>> x.T
 |      array([[ 1.,  3.],
 |             [ 2.,  4.]])
 |      >>> x = np.array([1.,2.,3.,4.])
 |      >>> x
 |      array([ 1.,  2.,  3.,  4.])
 |      >>> x.T
 |      array([ 1.,  2.,  3.,  4.])
 |      
 |      See Also
 |      --------
 |      transpose
 |  
 |  __array_finalize__
 |      None.
 |  
 |  __array_interface__
 |      Array protocol: Python side.
 |  
 |  __array_priority__
 |      Array priority.
 |  
 |  __array_struct__
 |      Array protocol: C-struct side.
 |  
 |  base
 |      Base object if memory is from some other object.
 |      
 |      Examples
 |      --------
 |      The base of an array that owns its memory is None:
 |      
 |      >>> x = np.array([1,2,3,4])
 |      >>> x.base is None
 |      True
 |      
 |      Slicing creates a view, whose memory is shared with x:
 |      
 |      >>> y = x[2:]
 |      >>> y.base is x
 |      True
 |  
 |  ctypes
 |      An object to simplify the interaction of the array with the ctypes
 |      module.
 |      
 |      This attribute creates an object that makes it easier to use arrays
 |      when calling shared libraries with the ctypes module. The returned
 |      object has, among others, data, shape, and strides attributes (see
 |      Notes below) which themselves return ctypes objects that can be used
 |      as arguments to a shared library.
 |      
 |      Parameters
 |      ----------
 |      None
 |      
 |      Returns
 |      -------
 |      c : Python object
 |          Possessing attributes data, shape, strides, etc.
 |      
 |      See Also
 |      --------
 |      numpy.ctypeslib
 |      
 |      Notes
 |      -----
 |      Below are the public attributes of this object which were documented
 |      in "Guide to NumPy" (we have omitted undocumented public attributes,
 |      as well as documented private attributes):
 |      
 |      .. autoattribute:: numpy.core._internal._ctypes.data
 |          :noindex:
 |      
 |      .. autoattribute:: numpy.core._internal._ctypes.shape
 |          :noindex:
 |      
 |      .. autoattribute:: numpy.core._internal._ctypes.strides
 |          :noindex:
 |      
 |      .. automethod:: numpy.core._internal._ctypes.data_as
 |          :noindex:
 |      
 |      .. automethod:: numpy.core._internal._ctypes.shape_as
 |          :noindex:
 |      
 |      .. automethod:: numpy.core._internal._ctypes.strides_as
 |          :noindex:
 |      
 |      If the ctypes module is not available, then the ctypes attribute
 |      of array objects still returns something useful, but ctypes objects
 |      are not returned and errors may be raised instead. In particular,
 |      the object will still have the ``as_parameter`` attribute which will
 |      return an integer equal to the data attribute.
 |      
 |      Examples
 |      --------
 |      >>> import ctypes
 |      >>> x
 |      array([[0, 1],
 |             [2, 3]])
 |      >>> x.ctypes.data
 |      30439712
 |      >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
 |      <ctypes.LP_c_long object at 0x01F01300>
 |      >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
 |      c_long(0)
 |      >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
 |      c_longlong(4294967296L)
 |      >>> x.ctypes.shape
 |      <numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
 |      >>> x.ctypes.shape_as(ctypes.c_long)
 |      <numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
 |      >>> x.ctypes.strides
 |      <numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
 |      >>> x.ctypes.strides_as(ctypes.c_longlong)
 |      <numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>
 |  
 |  data
 |      Python buffer object pointing to the start of the array's data.
 |  
 |  dtype
 |      Data-type of the array's elements.
 |      
 |      Parameters
 |      ----------
 |      None
 |      
 |      Returns
 |      -------
 |      d : numpy dtype object
 |      
 |      See Also
 |      --------
 |      numpy.dtype
 |      
 |      Examples
 |      --------
 |      >>> x
 |      array([[0, 1],
 |             [2, 3]])
 |      >>> x.dtype
 |      dtype('int32')
 |      >>> type(x.dtype)
 |      <type 'numpy.dtype'>
 |  
 |  flags
 |      Information about the memory layout of the array.
 |      
 |      Attributes
 |      ----------
 |      C_CONTIGUOUS (C)
 |          The data is in a single, C-style contiguous segment.
 |      F_CONTIGUOUS (F)
 |          The data is in a single, Fortran-style contiguous segment.
 |      OWNDATA (O)
 |          The array owns the memory it uses or borrows it from another object.
 |      WRITEABLE (W)
 |          The data area can be written to.  Setting this to False locks
 |          the data, making it read-only.  A view (slice, etc.) inherits WRITEABLE
 |          from its base array at creation time, but a view of a writeable
 |          array may be subsequently locked while the base array remains writeable.
 |          (The opposite is not true, in that a view of a locked array may not
 |          be made writeable.  However, currently, locking a base object does not
 |          lock any views that already reference it, so under that circumstance it
 |          is possible to alter the contents of a locked array via a previously
 |          created writeable view onto it.)  Attempting to change a non-writeable
 |          array raises a RuntimeError exception.
 |      ALIGNED (A)
 |          The data and all elements are aligned appropriately for the hardware.
 |      WRITEBACKIFCOPY (X)
 |          This array is a copy of some other array. The C-API function
 |          PyArray_ResolveWritebackIfCopy must be called before deallocating
 |          to the base array will be updated with the contents of this array.
 |      UPDATEIFCOPY (U)
 |          (Deprecated, use WRITEBACKIFCOPY) This array is a copy of some other array.
 |          When this array is
 |          deallocated, the base array will be updated with the contents of
 |          this array.
 |      FNC
 |          F_CONTIGUOUS and not C_CONTIGUOUS.
 |      FORC
 |          F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
 |      BEHAVED (B)
 |          ALIGNED and WRITEABLE.
 |      CARRAY (CA)
 |          BEHAVED and C_CONTIGUOUS.
 |      FARRAY (FA)
 |          BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
 |      
 |      Notes
 |      -----
 |      The `flags` object can be accessed dictionary-like (as in ``a.flags['WRITEABLE']``),
 |      or by using lowercased attribute names (as in ``a.flags.writeable``). Short flag
 |      names are only supported in dictionary access.
 |      
 |      Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be
 |      changed by the user, via direct assignment to the attribute or dictionary
 |      entry, or by calling `ndarray.setflags`.
 |      
 |      The array flags cannot be set arbitrarily:
 |      
 |      - UPDATEIFCOPY can only be set ``False``.
 |      - WRITEBACKIFCOPY can only be set ``False``.
 |      - ALIGNED can only be set ``True`` if the data is truly aligned.
 |      - WRITEABLE can only be set ``True`` if the array owns its own memory
 |        or the ultimate owner of the memory exposes a writeable buffer
 |        interface or is a string.
 |      
 |      Arrays can be both C-style and Fortran-style contiguous simultaneously.
 |      This is clear for 1-dimensional arrays, but can also be true for higher
 |      dimensional arrays.
 |      
 |      Even for contiguous arrays a stride for a given dimension
 |      ``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1``
 |      or the array has no elements.
 |      It does *not* generally hold that ``self.strides[-1] == self.itemsize``
 |      for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for
 |      Fortran-style contiguous arrays is true.
 |  
 |  flat
 |      A 1-D iterator over the array.
 |      
 |      This is a `numpy.flatiter` instance, which acts similarly to, but is not
 |      a subclass of, Python's built-in iterator object.
 |      
 |      See Also
 |      --------
 |      flatten : Return a copy of the array collapsed into one dimension.
 |      
 |      flatiter
 |      
 |      Examples
 |      --------
 |      >>> x = np.arange(1, 7).reshape(2, 3)
 |      >>> x
 |      array([[1, 2, 3],
 |             [4, 5, 6]])
 |      >>> x.flat[3]
 |      4
 |      >>> x.T
 |      array([[1, 4],
 |             [2, 5],
 |             [3, 6]])
 |      >>> x.T.flat[3]
 |      5
 |      >>> type(x.flat)
 |      <class 'numpy.flatiter'>
 |      
 |      An assignment example:
 |      
 |      >>> x.flat = 3; x
 |      array([[3, 3, 3],
 |             [3, 3, 3]])
 |      >>> x.flat[[1,4]] = 1; x
 |      array([[3, 1, 3],
 |             [3, 1, 3]])
 |  
 |  imag
 |      The imaginary part of the array.
 |      
 |      Examples
 |      --------
 |      >>> x = np.sqrt([1+0j, 0+1j])
 |      >>> x.imag
 |      array([ 0.        ,  0.70710678])
 |      >>> x.imag.dtype
 |      dtype('float64')
 |  
 |  itemsize
 |      Length of one array element in bytes.
 |      
 |      Examples
 |      --------
 |      >>> x = np.array([1,2,3], dtype=np.float64)
 |      >>> x.itemsize
 |      8
 |      >>> x = np.array([1,2,3], dtype=np.complex128)
 |      >>> x.itemsize
 |      16
 |  
 |  nbytes
 |      Total bytes consumed by the elements of the array.
 |      
 |      Notes
 |      -----
 |      Does not include memory consumed by non-element attributes of the
 |      array object.
 |      
 |      Examples
 |      --------
 |      >>> x = np.zeros((3,5,2), dtype=np.complex128)
 |      >>> x.nbytes
 |      480
 |      >>> np.prod(x.shape) * x.itemsize
 |      480
 |  
 |  ndim
 |      Number of array dimensions.
 |      
 |      Examples
 |      --------
 |      >>> x = np.array([1, 2, 3])
 |      >>> x.ndim
 |      1
 |      >>> y = np.zeros((2, 3, 4))
 |      >>> y.ndim
 |      3
 |  
 |  real
 |      The real part of the array.
 |      
 |      Examples
 |      --------
 |      >>> x = np.sqrt([1+0j, 0+1j])
 |      >>> x.real
 |      array([ 1.        ,  0.70710678])
 |      >>> x.real.dtype
 |      dtype('float64')
 |      
 |      See Also
 |      --------
 |      numpy.real : equivalent function
 |  
 |  shape
 |      Tuple of array dimensions.
 |      
 |      The shape property is usually used to get the current shape of an array,
 |      but may also be used to reshape the array in-place by assigning a tuple of
 |      array dimensions to it.  As with `numpy.reshape`, one of the new shape
 |      dimensions can be -1, in which case its value is inferred from the size of
 |      the array and the remaining dimensions. Reshaping an array in-place will
 |      fail if a copy is required.
 |      
 |      Examples
 |      --------
 |      >>> x = np.array([1, 2, 3, 4])
 |      >>> x.shape
 |      (4,)
 |      >>> y = np.zeros((2, 3, 4))
 |      >>> y.shape
 |      (2, 3, 4)
 |      >>> y.shape = (3, 8)
 |      >>> y
 |      array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
 |             [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
 |             [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])
 |      >>> y.shape = (3, 6)
 |      Traceback (most recent call last):
 |        File "<stdin>", line 1, in <module>
 |      ValueError: total size of new array must be unchanged
 |      >>> np.zeros((4,2))[::2].shape = (-1,)
 |      Traceback (most recent call last):
 |        File "<stdin>", line 1, in <module>
 |      AttributeError: incompatible shape for a non-contiguous array
 |      
 |      See Also
 |      --------
 |      numpy.reshape : similar function
 |      ndarray.reshape : similar method
 |  
 |  size
 |      Number of elements in the array.
 |      
 |      Equal to ``np.prod(a.shape)``, i.e., the product of the array's
 |      dimensions.
 |      
 |      Notes
 |      -----
 |      `a.size` returns a standard arbitrary precision Python integer. This
 |      may not be the case with other methods of obtaining the same value
 |      (like the suggested ``np.prod(a.shape)``, which returns an instance
 |      of ``np.int_``), and may be relevant if the value is used further in
 |      calculations that may overflow a fixed size integer type.
 |      
 |      Examples
 |      --------
 |      >>> x = np.zeros((3, 5, 2), dtype=np.complex128)
 |      >>> x.size
 |      30
 |      >>> np.prod(x.shape)
 |      30
 |  
 |  strides
 |      Tuple of bytes to step in each dimension when traversing an array.
 |      
 |      The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a`
 |      is::
 |      
 |          offset = sum(np.array(i) * a.strides)
 |      
 |      A more detailed explanation of strides can be found in the
 |      "ndarray.rst" file in the NumPy reference guide.
 |      
 |      Notes
 |      -----
 |      Imagine an array of 32-bit integers (each 4 bytes)::
 |      
 |        x = np.array([[0, 1, 2, 3, 4],
 |                      [5, 6, 7, 8, 9]], dtype=np.int32)
 |      
 |      This array is stored in memory as 40 bytes, one after the other
 |      (known as a contiguous block of memory).  The strides of an array tell
 |      us how many bytes we have to skip in memory to move to the next position
 |      along a certain axis.  For example, we have to skip 4 bytes (1 value) to
 |      move to the next column, but 20 bytes (5 values) to get to the same
 |      position in the next row.  As such, the strides for the array `x` will be
 |      ``(20, 4)``.
 |      
 |      See Also
 |      --------
 |      numpy.lib.stride_tricks.as_strided
 |      
 |      Examples
 |      --------
 |      >>> y = np.reshape(np.arange(2*3*4), (2,3,4))
 |      >>> y
 |      array([[[ 0,  1,  2,  3],
 |              [ 4,  5,  6,  7],
 |              [ 8,  9, 10, 11]],
 |             [[12, 13, 14, 15],
 |              [16, 17, 18, 19],
 |              [20, 21, 22, 23]]])
 |      >>> y.strides
 |      (48, 16, 4)
 |      >>> y[1,1,1]
 |      17
 |      >>> offset=sum(y.strides * np.array((1,1,1)))
 |      >>> offset/y.itemsize
 |      17
 |      
 |      >>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
 |      >>> x.strides
 |      (32, 4, 224, 1344)
 |      >>> i = np.array([3,5,2,2])
 |      >>> offset = sum(i * x.strides)
 |      >>> x[3,5,2,2]
 |      813
 |      >>> offset / x.itemsize
 |      813
 |  
 |  ----------------------------------------------------------------------
 |  Data and other attributes defined here:
 |  
 |  __hash__ = None
# 未指定索引
data = np.array(list('abcd'))
s = pd.Series(data)
print(s)
0    a
1    b
2    c
3    d
dtype: object
# 创建Series指定索引
s = pd.Series(list('qwer'),index=[list('ABCD')])
print(s)
A    q
B    w
C    e
D    r
dtype: object
# 从标量创建Series
print(pd.Series(5,index={0,1,2,3}))
0    5
1    5
2    5
3    5
dtype: int64
# 字典类型创建Series,并指定数据类型为float,不指定索引
data = {'a':0,'b':1,'c':2}
s = pd.Series(data,dtype=float)
print(s)
a    0.0
b    1.0
c    2.0
dtype: float64
# 字典类型创建Series,指定索引创建,如果data中的没有对应的索引,将以NaN(即无值)填充
data = {'a':0,'b':1,'c':2}
s = pd.Series(data,index=['a','b','d','c'],dtype=float)
print(s)
a    0.0
b    1.0
d    NaN
c    2.0
dtype: float64
# 获取Series的元素
# 1、通过位置索引获取
print(s[0])
0.0
# 2、通过index来索引
print(s[['a','b']])
a    0.0
b    1.0
dtype: float64
# 3、索引不存在的的index会报错
print(s['g'])
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

c:\python37-32\lib\site-packages\pandas\core\indexes\base.py in get_value(self, series, key)
   4728             try:
-> 4729                 return libindex.get_value_box(s, key)
   4730             except IndexError:


pandas\_libs\index.pyx in pandas._libs.index.get_value_box()


pandas\_libs\index.pyx in pandas._libs.index.get_value_at()


pandas\_libs\util.pxd in pandas._libs.util.get_value_at()


pandas\_libs\util.pxd in pandas._libs.util.validate_indexer()


TypeError: 'str' object cannot be interpreted as an integer


During handling of the above exception, another exception occurred:


KeyError                                  Traceback (most recent call last)

<ipython-input-30-df1755480940> in <module>
      1 # 3、索引不存在的的index会报错
----> 2 print(s['g'])


c:\python37-32\lib\site-packages\pandas\core\series.py in __getitem__(self, key)
   1062         key = com.apply_if_callable(key, self)
   1063         try:
-> 1064             result = self.index.get_value(self, key)
   1065 
   1066             if not is_scalar(result):


c:\python37-32\lib\site-packages\pandas\core\indexes\base.py in get_value(self, series, key)
   4735                     raise InvalidIndexError(key)
   4736                 else:
-> 4737                     raise e1
   4738             except Exception:  # pragma: no cover
   4739                 raise e1


c:\python37-32\lib\site-packages\pandas\core\indexes\base.py in get_value(self, series, key)
   4721         k = self._convert_scalar_indexer(k, kind="getitem")
   4722         try:
-> 4723             return self._engine.get_value(s, k, tz=getattr(series.dtype, "tz", None))
   4724         except KeyError as e1:
   4725             if len(self) > 0 and (self.holds_integer() or self.is_boolean()):


pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_value()


pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_value()


pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()


pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()


pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()


KeyError: 'g'

DataFrame

# 数据帧(DataFrame)是二维数据结构,即数据以行和列的表格方式排列
# 就是除了数据外还有行标记、列标记,默认为从0 -- (row/col) num-1
# 可以用于创建DataFrame的数据类型有列表、字典、系列、Numpy.array、另一个DataFrame
# pandas.DataFrame( data, index, columns, dtype, copy)
# 创建一个空的DataFrame
df = pd.DataFrame()
df
 

 
# 从列表中创建DataFrame,
# 普通list创建
data = [1,2,3,4]
df = pd.DataFrame(data)
print(df)
   0
0  1
1  2
2  3
3  4
# list的list创建,如[[A1,B1],[A2,B2]] ,为两列
data = [['Row1',12],['Row2',23],['Row3',34]]
df = pd.DataFrame(data)
df
 

 01
0 Row1 12
1 Row2 23
2 Row3 34
# 指定列名,创建
df = pd.DataFrame(data,columns={'Col1','Col2'},dtype = float)
df
 

 Col2Col1
0 Row1 12.0
1 Row2 23.0
2 Row3 34.0
# 从numpy的narray创建dataFrame
data = np.ones([5,6],dtype=int)
df = pd.DataFrame(data,columns=list('ABCDEF'))
df
 

 ABCDEF
0 1 1 1 1 1 1
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
# 从series字典创建DataFrame
d = {'one':pd.Series([1,2,3],index = ['A','B','C']),
    'two':pd.Series([1,2,3,4,5],index = list('ABCDE'))}
df = pd.DataFrame(d)
df
 

 onetwo
A 1.0 1
B 2.0 2
C 3.0 3
D NaN 4
E NaN 5
# 从list字典中创
data = {'Name':['Tom', 'Jack', 'Steve', 'Ricky'],'Age':[28,34,29,42]}
df = pd.DataFrame(data)
df
 

 NameAge
0 Tom 28
1 Jack 34
2 Steve 29
3 Ricky 42
# 指定索引
df = pd.DataFrame(data, index=['rank1','rank2','rank3','rank4'])
df
 

 NameAge
rank1 Tom 28
rank2 Jack 34
rank3 Steve 29
rank4 Ricky 42
data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data)
df
 

 abc
0 1 2 NaN
1 5 10 20.0
# 与上不同的使用有索引
data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data, index=['first', 'second'])
df
 

 abc
first 1 2 NaN
second 5 10 20.0
# 根据列名来创建列,data中多余的忽略
df1 = pd.DataFrame(data, index=['first', 'second'], columns=['a', 'b'])
df1
 

 ab
first 1 2
second 5 10
# 对于这类型的数据类型,A:B:{...},A为列,B为索引,剩下的为值
data = {'cat':{'name':['Tom','Jack','Steve', 'Ricky'],'Age':[8,4,9,2]},'dog':{'name':['Jon','Dany','Pipy'],'Age':[3,5,2]}}
df = pd.DataFrame(data)
df
 

 catdog
name [Tom, Jack, Steve, Ricky] [Jon, Dany, Pipy]
Age [8, 4, 9, 2] [3, 5, 2]
# DataFrame的元素选择
# 1、按标签选择
d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d)
print(df)
print()
df.loc['b']
   one  two
a  1.0    1
b  2.0    2
c  3.0    3
d  NaN    4






one    2.0
two    2.0
Name: b, dtype: float64
# 2、按位置索引
print(df)
print()
df.iloc[2]
   one  two
a  1.0    1
b  2.0    2
c  3.0    3
d  NaN    4






one    3.0
two    3.0
Name: c, dtype: float64
# 3、切片索引
print(df)
print()
df[2:4]
   one  two
a  1.0    1
b  2.0    2
c  3.0    3
d  NaN    4
 

 onetwo
c 3.0 3
d NaN 4
# 附加行
df = pd.DataFrame([[1, 2], [3, 4]], columns = ['a','b'])
df2 = pd.DataFrame([[5, 6], [7, 8]], columns = ['a','b'])
df = df.append(df2)
df
 

 ab
0 1 2
1 3 4
0 5 6
1 7 8
# 删除行
print(df)
print()

df = df.drop(1)
print()
df
   a  b
0  1  2
1  3  4
0  5  6
1  7  8
 

 ab
0 1 2
0 5 6

DataFrame常用属性
dtypes empty ndim values shape T转置

 d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
df = pd.DataFrame(d)
# empty属性
df.empty
False
# dtypes属性
df.dtypes
Name       object
Age         int64
Rating    float64
dtype: object
# ndim属性
df.ndim
2
# values属性
df.values
array([['Tom', 25, 4.23],
       ['James', 26, 3.24],
       ['Ricky', 25, 3.98],
       ['Vin', 23, 2.56],
       ['Steve', 30, 3.2],
       ['Minsu', 29, 4.6],
       ['Jack', 23, 3.8]], dtype=object)

DataFrame的loc、iloc、ix索引的区别

# 1、loc 只能通过行和列的标签进行索引
# iloc只能通过行和列在DataFrame中的位置进行索引
# ix支持以上两种索引方式
# 2、行索引和列索引都为list或其等价形式(:),返回结果为DataFrame
# 行索引和列索引中有一个为确定值,放回结果为Series
# 行索引和列索引都为确定值,返回结果为DataFrame中的某一确定元素

Pandas常用函数

# reindex —— 重建索引
# reindex_like —— 重建和另一对象相同的索引
# rename —— 行、列标签重命名
# sort_index —— 按行标签排序
# sort_values —— 按值排序
unsorted_df=pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],columns=['col2','col1'])
print (unsorted_df)
       col2      col1
1  0.588919 -1.286545
4 -0.216037  0.229273
6  0.980793  0.251861
2 -0.179507  0.115554
3  0.226075  0.446773
5 -2.184631  0.040103
9  1.593689  0.378275
8  0.778931 -0.134482
0  1.294250 -0.086114
7 -0.756915 -0.446006
# reidnex
N=20
df = pd.DataFrame({
'A': pd.date_range(start='2016-01-01',periods=N,freq='D'),
'x': np.linspace(0,stop=N-1,num=N),
'y': np.random.rand(N),
'C': np.random.choice(['Low','Medium','High'],N).tolist(),
'D': np.random.normal(100, 10, size=(N)).tolist()
})
print(df)
print()
df_reindexed = df.reindex(index=[0,2,5], columns=['A', 'C', 'B'])
print (df_reindexed)
            A     x         y       C           D
0  2016-01-01   0.0  0.661369     Low   83.894715
1  2016-01-02   1.0  0.790472  Medium  116.237968
2  2016-01-03   2.0  0.302724     Low   90.430196
3  2016-01-04   3.0  0.751360     Low  102.215610
4  2016-01-05   4.0  0.519902    High  102.216478
5  2016-01-06   5.0  0.438849  Medium  106.463023
6  2016-01-07   6.0  0.885001     Low   89.814096
7  2016-01-08   7.0  0.109956  Medium   90.270910
8  2016-01-09   8.0  0.389458     Low   98.465227
9  2016-01-10   9.0  0.318306    High  118.776363
10 2016-01-11  10.0  0.152488     Low   98.696870
11 2016-01-12  11.0  0.485482    High  116.381673
12 2016-01-13  12.0  0.387862  Medium  114.534515
13 2016-01-14  13.0  0.637408     Low   94.842515
14 2016-01-15  14.0  0.456157  Medium   97.441336
15 2016-01-16  15.0  0.015865     Low  100.749580
16 2016-01-17  16.0  0.833705  Medium  115.324600
17 2016-01-18  17.0  0.093276  Medium   96.512771
18 2016-01-19  18.0  0.797762     Low   95.039926
19 2016-01-20  19.0  0.336154    High  103.888419

           A       C   B
0 2016-01-01     Low NaN
2 2016-01-03     Low NaN
5 2016-01-06  Medium NaN
# reindex_like
df1 = pd.DataFrame(np.random.randn(10,3),columns=['col1','col2','col3'])
df2 = pd.DataFrame(np.random.randn(7,3),columns=['col1','col2','col3'])
df1 = df1.reindex_like(df2)
df1
 

 col1col2col3
0 0.052837 -0.253690 -0.696232
1 1.249527 -1.210593 0.397398
2 -0.527549 0.336701 1.796881
3 1.126255 -1.054539 0.773854
4 0.821721 0.400086 -1.051927
5 -0.490465 0.472505 0.545293
6 -0.652554 -0.858469 0.099429
# rename
df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3'])
print(df1)
print()
print ("After renaming the rows and columns:\n")
df1.rename(columns={'col1' : 'c1', 'col2' : 'c2'},
index = {0 : 'apple', 1 : 'banana', 2 : 'durian'})
       col1      col2      col3
0 -0.932208 -0.140297  1.568057
1  0.343363 -0.466544 -1.395083
2 -0.313693  1.194218 -1.123901
3  1.051939  0.734287 -0.459811
4  0.389540  1.178237 -0.729928
5  1.581532  0.455418 -0.004001

After renaming the rows and columns:
 

 c1c2col3
apple -0.932208 -0.140297 1.568057
banana 0.343363 -0.466544 -1.395083
durian -0.313693 1.194218 -1.123901
3 1.051939 0.734287 -0.459811
4 0.389540 1.178237 -0.729928
5 1.581532 0.455418 -0.004001
# sort_index
help(unsorted_df.sort_index)
Help on method sort_index in module pandas.core.frame:

sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None) method of pandas.core.frame.DataFrame instance
    Sort object by labels (along an axis).

    Parameters
    ----------
    axis : {0 or 'index', 1 or 'columns'}, default 0
        The axis along which to sort.  The value 0 identifies the rows,
        and 1 identifies the columns.
    level : int or level name or list of ints or list of level names
        If not None, sort on values in specified index level(s).
    ascending : bool, default True
        Sort ascending vs. descending.
    inplace : bool, default False
        If True, perform operation in-place.
    kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
        Choice of sorting algorithm. See also ndarray.np.sort for more
        information.  `mergesort` is the only stable algorithm. For
        DataFrames, this option is only applied when sorting on a single
        column or label.
    na_position : {'first', 'last'}, default 'last'
        Puts NaNs at the beginning if `first`; `last` puts NaNs at the end.
        Not implemented for MultiIndex.
    sort_remaining : bool, default True
        If True and sorting by level and index is multilevel, sort by other
        levels too (in order) after sorting by specified level.

    Returns
    -------
    sorted_obj : DataFrame or None
        DataFrame with sorted index if inplace=False, None otherwise.
# 行名排序
sorted_df=unsorted_df.sort_index()
print (sorted_df)
# 行名倒序
sorted_df = unsorted_df.sort_index(ascending=False)
print (sorted_df)
# 按照列属性名排序
sorted_df=unsorted_df.sort_index(axis=1)
print (sorted_df)
       col2      col1
0  1.294250 -0.086114
1  0.588919 -1.286545
2 -0.179507  0.115554
3  0.226075  0.446773
4 -0.216037  0.229273
5 -2.184631  0.040103
6  0.980793  0.251861
7 -0.756915 -0.446006
8  0.778931 -0.134482
9  1.593689  0.378275
       col2      col1
9  1.593689  0.378275
8  0.778931 -0.134482
7 -0.756915 -0.446006
6  0.980793  0.251861
5 -2.184631  0.040103
4 -0.216037  0.229273
3  0.226075  0.446773
2 -0.179507  0.115554
1  0.588919 -1.286545
0  1.294250 -0.086114
       col1      col2
1 -1.286545  0.588919
4  0.229273 -0.216037
6  0.251861  0.980793
2  0.115554 -0.179507
3  0.446773  0.226075
5  0.040103 -2.184631
9  0.378275  1.593689
8 -0.134482  0.778931
0 -0.086114  1.294250
7 -0.446006 -0.756915
# sort_values
# 按col1倒序
unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
sorted_df = unsorted_df.sort_values(by='col1',ascending=False)
print (sorted_df)
   col1  col2
0     2     1
1     1     3
2     1     2
3     1     4
# 先按col1排序,再按col2排序
unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
sorted_df = unsorted_df.sort_values(by=['col1','col2'])
print (sorted_df)
   col1  col2
2     1     2
1     1     3
3     1     4
0     2     1

常用的字符串函数

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveMinsu'])
s
0             Tom
1    William Rick
2            John
3         Alber@t
4             NaN
5            1234
6      SteveMinsu
dtype: object
s.str.lower()
0             tom
1    william rick
2            john
3         alber@t
4             NaN
5            1234
6      steveminsu
dtype: object
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),
'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
df = pd.DataFrame(d)
df
 

 NameAgeRating
0 Tom 25 4.23
1 James 26 3.24
2 Ricky 25 3.98
3 Vin 23 2.56
4 Steve 30 3.20
5 Minsu 29 4.60
6 Jack 23 3.80
# 1 lower() 将Series/Index中的字符串转换为小写。
# 2 upper() 将Series/Index中的字符串转换为大写。
# 3 len() 计算字符串长度。
# 4 strip() 帮助从两侧的系列/索引中的每个字符串中删除空格(包括换行符)。
# 5 split(' ') 用给定的模式拆分每个字符串。
# 6 cat(sep=' ') 使用给定的分隔符连接系列/索引元素。
# 8 contains(pattern) 如果元素中包含子字符串,则返回每个元素的布尔值True,否则为False。
# 9 replace(a,b) 将值a替换为值b。
# 10 repeat(value) 重复每个元素指定的次数。
# 11 count(pattern) 返回模式中每个元素的出现总数。
# 12 startswith(pattern) 如果系列/索引中的元素以模式开始,则返回true。
# 13 endswith(pattern) 如果系列/索引中的元素以模式结束,则返回true。
# 17 islower() 检查系列/索引中每个字符串中的所有字符是否小写,返回布尔值
# 18 isupper() 检查系列/索引中每个字符串中的所有字符是否大写,返回布尔值
# 19 isnumeric() 检查系列/索引中每个字符串中的所有字符是否为数字,返回布尔值
df.Name.str.upper()
0      TOM
1    JAMES
2    RICKY
3      VIN
4    STEVE
5    MINSU
6     JACK
Name: Name, dtype: object

pandas迭代

N=20
df = pd.DataFrame({
'A': pd.date_range(start='2016-01-01',periods=N,freq='D'),
'x': np.linspace(0,stop=N-1,num=N),
'y': np.random.rand(N),
'C': np.random.choice(['Low','Medium','High'],N).tolist(),
'D': np.random.normal(100, 10, size=(N)).tolist()
})
df
 

 AxyCD
0 2016-01-01 0.0 0.446246 Low 90.082811
1 2016-01-02 1.0 0.820547 Medium 85.204472
2 2016-01-03 2.0 0.482619 Medium 105.942642
3 2016-01-04 3.0 0.718412 Low 115.687592
4 2016-01-05 4.0 0.331059 Medium 102.752829
5 2016-01-06 5.0 0.538200 Low 98.576102
6 2016-01-07 6.0 0.513321 Medium 104.510604
7 2016-01-08 7.0 0.035004 Low 91.549099
8 2016-01-09 8.0 0.732639 Low 85.738154
9 2016-01-10 9.0 0.129754 Low 106.541511
10 2016-01-11 10.0 0.985311 Medium 102.242245
11 2016-01-12 11.0 0.116828 High 101.988366
12 2016-01-13 12.0 0.479230 Low 113.952426
13 2016-01-14 13.0 0.412539 Medium 95.093407
14 2016-01-15 14.0 0.469513 Low 107.428139
15 2016-01-16 15.0 0.552472 High 99.081998
16 2016-01-17 16.0 0.434911 Low 93.127380
17 2016-01-18 17.0 0.591642 Medium 117.855380
18 2016-01-19 18.0 0.801644 Low 127.432539
19 2016-01-20 19.0 0.555657 High 81.427083
# 遍历列名
for col in df:
    print (col)
A
x
y
C
D
# 遍历元素
for row_data in df.values:
    print(row_data)
[Timestamp('2016-01-01 00:00:00') 0.0 0.44624633059211527 'Low'
 90.08281134807373]
[Timestamp('2016-01-02 00:00:00') 1.0 0.8205471491612922 'Medium'
 85.20447173046472]
[Timestamp('2016-01-03 00:00:00') 2.0 0.4826193547059088 'Medium'
 105.94264179882202]
[Timestamp('2016-01-04 00:00:00') 3.0 0.7184117272123155 'Low'
 115.68759211724687]
[Timestamp('2016-01-05 00:00:00') 4.0 0.3310586774340063 'Medium'
 102.75282946947281]
[Timestamp('2016-01-06 00:00:00') 5.0 0.5382003539908004 'Low'
 98.57610178066079]
[Timestamp('2016-01-07 00:00:00') 6.0 0.5133208064440394 'Medium'
 104.5106036836102]
[Timestamp('2016-01-08 00:00:00') 7.0 0.03500435923546885 'Low'
 91.54909932326467]
[Timestamp('2016-01-09 00:00:00') 8.0 0.7326388691009159 'Low'
 85.73815394265921]
[Timestamp('2016-01-10 00:00:00') 9.0 0.1297542568969341 'Low'
 106.54151098431808]
[Timestamp('2016-01-11 00:00:00') 10.0 0.9853111321167449 'Medium'
 102.24224501648254]
[Timestamp('2016-01-12 00:00:00') 11.0 0.11682758077167632 'High'
 101.98836610106864]
[Timestamp('2016-01-13 00:00:00') 12.0 0.4792303697943716 'Low'
 113.95242649298567]
[Timestamp('2016-01-14 00:00:00') 13.0 0.41253852157312554 'Medium'
 95.09340708407247]
[Timestamp('2016-01-15 00:00:00') 14.0 0.4695131476336729 'Low'
 107.42813873921236]
[Timestamp('2016-01-16 00:00:00') 15.0 0.5524721315517419 'High'
 99.0819978391391]
[Timestamp('2016-01-17 00:00:00') 16.0 0.4349111111142554 'Low'
 93.12738041265543]
[Timestamp('2016-01-18 00:00:00') 17.0 0.5916418035431593 'Medium'
 117.85538021367091]
[Timestamp('2016-01-19 00:00:00') 18.0 0.8016441672459498 'Low'
 127.43253872465036]
[Timestamp('2016-01-20 00:00:00') 19.0 0.555657043090727 'High'
 81.4270829436166]


pandas中文文档