AI-Dog

爱生活,乐分享,大家好才是真的好!

导航

TensorFlow --playground游乐场

TensorFlow游乐场官网http://playground.tensorflow.org(国内需要梯子才能访问)

游乐场的神经网络结构有三层,第一层为输入层,输入的是特征向量(描述问题特征的向量,特征向量的提取对机器学习的效果十分重要),代表特征向量中每一个特征的取值。同一层的节点不会相连,而且每一层只和下一层链接(有的是跨层连接),直到最后一层作为输出层得到计算结果。在输入层与输出层之间是隐藏层,是神经网络的主体结构。

 

 

通过游乐场可发现,使用神经网络解决分类问题主要有四个步骤:

  1. 提取问题中实体的特征向量作为神经网络的输入
  2. 定义神经网络的结构,并定义如何从神经网络的输入得到输出(隐藏层)
  3. 通过训练数据来调整神经网络中参数的取值(神经网络的训练过程)
  4. 使用训练好的神经网络来预测未知数据

 

posted on 2019-03-11 12:30  AI-Dog  阅读(2155)  评论(1编辑  收藏  举报