C++关键字之likely和unlikely

什么是likely和unlikely

既然程序是我们程序员所写,在一些明确的场景下,我们应该比CPU和编译器更了解哪个分支条件更有可能被满足。我们是否可将这一先验知识告知编译器和CPU, 提高分支预测的准确率,从而减少CPU流水线分支预测错误带来的性能损失呢?答案是可以!它便是likely和unlikely。在Linux内核代码中,这两个宏的应用比比皆是。下面是他们的定义:

#define likely(x) __builtin_expect(!!(x), 1) 
#define unlikely(x) __builtin_expect(!!(x), 0)

likely,用于修饰if/else if分支,表示该分支的条件更有可能被满足。而unlikely与之相反
以下为示例。unlikely修饰argc > 0分支,表示该分支不太可能被满足。

#include <cstdio>

#define likely(x)       __builtin_expect(!!(x), 1)
#define unlikely(x)     __builtin_expect(!!(x), 0)

int main(int argc, char *argv[])
{
    if (unlikely(argc > 0)) {
        puts ("Positive\n");
    } else
    {
        puts ("Zero or Negative\n");
    }
    return 0;
}

likely/unlikely的原理

接下来,我们从汇编指令分析likely/unlikely到底是如何起作用的?
首先我们将上述代码中的unlikely去掉,然后反汇编,作为对照组
汇编如下,我们看到,if分支中的指令被编译器放置于分支跳转指令jle相邻的位置,即CPU流水线在遇到jle指令所代表的的'岔路口'时,更倾向于走if分支

.LC0:
        .string "Positive\n"
.LC1:
        .string "Zero or Negative\n"
main:
        sub     rsp, 8
        test    edi, edi                
        jle     .L2                     ; 如果argc <= 0, 跳转到L2
        mov     edi, OFFSET FLAT:.LC0   ; 如果argc > 0, 从这里执行
        call    puts
.L3:
        xor     eax, eax
        add     rsp, 8
        ret
.L2:
        mov     edi, OFFSET FLAT:.LC1
        call    puts
        jmp     .L3

接着我们在if分支中加上unlikely, 反汇编如下。这里的情况正好与对照组相反,if分支下的指令被编译器放置于远离跳转指令jg的位置。这意味着CPU此时更倾向于走else分支。

.LC0:
        .string "Positive\n"
.LC1:
        .string "Zero or Negative\n"
main:
        sub     rsp, 8
        test    edi, edi
        jg      .L6
        mov     edi, OFFSET FLAT:.LC1
        call    puts
.L3:
        xor     eax, eax
        add     rsp, 8
        ret
.L6:
        mov     edi, OFFSET FLAT:.LC0
        call    puts
        jmp     .L3

因此,通过对分支条件使用likely和unlikely,我们可给编译器一种暗示,即该分支条件被满足的概率比较大或比较小。而编译器利用这一信息优化其机器指令,从而最大限度减少CPU分支预测失败带来的惩罚。

likely/unlikely的适用条件

CPU有自带的分支预测器,在大多数场景下效果不错。因此在分支发生概率严重倾斜、追求极致性能的场景下,使用likely/unlikely才具有较大意义。

C++20中的likely/unlikely

C++20之前的,likely和unlikely只不过是一对自定义的宏。而C++20中正式将likely和unlikely确定为属性关键字。

int foo(int i) {
    switch(i) {
               case 1: handle1();
                       break;
    [[likely]] case 2: handle2();
                       break;
    }
}
posted @ 2022-10-15 11:43  misaka-mikoto  阅读(332)  评论(0编辑  收藏  举报