redis的持久化RDB与AOF

持久化之RDB

RDB(Redis DataBase)是什么

  • 在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里。
  • Redis会单独创建(fork)一个子进程来进行持久化,会先将数据写入到 一个临时文件中,待持久化过程都结束了,再用这个临时文件替换上次持久化好的文件。
  • 整个过程中,主进程是不进行任何IO操作的,这就确保了极高的性能。如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那RDB方式要比AOF方式更加的高效。RDB的缺点是最后一次持久化后的数据可能丢失。

Fork

Fork的作用是复制一个与当前进程一样的进程。新进程的所有数据(变量、环境变量、程序计数器等) 数值都和原进程一致,但是是一个全新的进程,并作为原进程的子进程

  • 快照文件默认被存储在当前文件夹中,名称为dump.rdb,可以通过dir和dbfilename参数来修改默认值。
  • 相关配置在配置文件的位置 - 在redis.conf搜寻### SNAPSHOTTING ###

配置文件:

# redis是基于内存的数据库,可以通过设置该值定期写入磁盘。
# 注释掉“save”这一行配置项就可以让保存数据库功能失效
# 900秒(15分钟)内至少1个key值改变(则进行数据库保存--持久化) 
# 300秒(5分钟)内至少10个key值改变(则进行数据库保存--持久化) 
# 60秒(1分钟)内至少10000个key值改变(则进行数据库保存--持久化)
save 900 1
save 300 10
save 60 10000
 
#当RDB持久化出现错误后,是否依然进行继续进行工作,yes:不能进行工作,no:可以继续进行工作,可以通过info中的rdb_last_bgsave_status了解RDB持久化是否有错误
stop-writes-on-bgsave-error yes
 
#使用压缩rdb文件,rdb文件压缩使用LZF压缩算法,yes:压缩,但是需要一些cpu的消耗。no:不压缩,需要更多的磁盘空间
rdbcompression yes
 
#是否校验rdb文件。从rdb格式的第五个版本开始,在rdb文件的末尾会带上CRC64的校验和。这跟有利于文件的容错性,但是在保存rdb文件的时候,会有大概10%的性能损耗,所以如果你追求高性能,可以关闭该配置。
rdbchecksum yes
 
#rdb文件的名称
dbfilename dump.rdb
 
#数据目录,数据库的写入会在这个目录。rdb、aof文件也会写在这个目录
dir /data

如何触发RDB快照

  • 通过配制文件中的save条件(可自己配置)

    save 900 1
    save 300 10
    save 60 10000
  • 手动通过save和bgsave命令、

    • save:save时只管保存,其他不管,全部阻塞
    • bgsave:redis会在后台异步的进行快照操作,同时还可以响应客户端请求。可以通过lastsave命令获取最后一次成功执行快照的事件
  • 通过flushall命令,也会产生dump.rdb文件,但是里面是空的,无意义。
  • 通过shutdown命令,安全退出,也会生成快照文件(和异常退出形成对比,比如:kill杀死进程的方式)

如何恢复

appendonly no
dbfilename dump.rdb
dir /var/lib/redis  #可以自行指定

appendonly 设置成no,redis启动时会把/var/lib/redis 目录下的dump.rdb 中的数据恢复。dir 和dbfilename 都可以设置。我测试时appendonly 设置成yes 时候不会将dump.rdb文件中的数据恢复

优势

  1. 恢复数据的速度很快,适合大规模的数据恢复,而又对部分数据不敏感的情况
  2. dump.db文件是一个压缩的二进制文件,文件暂用空间小

劣势

  1. 当出现异常退出时,会丢失最后一次快照后的数据
  2. 当fork的时候,内存的中的数据会被克隆一份,大致两倍的膨胀需要考虑。而且,当数据过大时,fork操作占用过多的系统资源,造成主服务器进程假死。

使用场景

  1. 数据备份
  2. 可容忍部分数据丢失
  3. 跨数据中心的容灾备份

RDB小结

动态所有停止RDB保存规则的方法:redis-cli config set save ""

 

 

  • RDB是一个非常紧凑的文件。
  • RDB在保存RDB文件时父进程唯一需要做的就是fork出一个子进程,接下来的工作全部由子进程来做,父进程不需要再做其他IO操作,所以RDB持久化方式可以最大化redis的性能。
  • 与AOF相比,在恢复大的数据集的时候,RDB方式会更快一一些。
  • 数据丢失风险大。
  • RDB需要经常fork子进程来保存数据集到硬盘上,当数据集比较大的时候fork的过程是非常耗时的吗,可能会导致Redis在一些毫秒级不能回应客户端请求。

持久化之AOF

AOF(Append Only File)是什么

以日志的形式来记录每个写操作,将Redis执行过的所有写指令记录下来(读操作不记录), 只许追加文件但不可以改写文件,

redis启动之初会读取该文件重新构建数据,换言之,redis 重启的话就根据日志文件的内容将写指令从前到后执行一次以完成数据的恢复工作

AOF配置

  • 相关配置在配置文件的位置 - 在redis.conf搜寻### APPEND ONLY MODE ###
  • aof保存的是appendonly.aof文件(在配置文件可修改文件名)

AOF启动/修复/恢复

  • 正常恢复
    • 启动:设置Yes
      • 修改默认的appendonly no,改为yes
    • 将有数据的aof文件复制一份保存到对应目录(config get dir)
    • 恢复:重启redis然后重新加载
  • 异常恢复
    • 启动:设置Yes
      • 修改默认的appendonly no,改为yes
    • 备份被写坏的AOF文件
    • 修复:
      • Redis-check-aof --fix进行修复
    • 恢复:重启redis然后重新加载

rewrite

  • 是什么:
    • AOF采用文件追加方式,文件会越来越大。为避免出现此种情况,新增了重写机制, 当AOF文件的大小超过所设定的阈值时,Redis就会启动AOF文件的内容压缩, 只保留可以恢复数据的最小指令集。可以使用命令bgrewriteaof
  • 重写原理
    • AOF文件持续增长而过大时,会fork出一条新进程来将文件重写(也是先写临时文件最后再rename), 遍历新进程的内存中数据,每条记录有一条的Set语句。重写aof文件的操作,并没有读取旧的aof文件, 而是将整个内存中的数据库内容用命令的方式重写了一个新的aof文件,这点和快照有点类似
  • 触发机制
    • Redis会记录上次重写时的AOF大小,默认配置是当AOF文件大小是上次rewrite后大小的一倍且文件大于64M时触发

优势与劣势

  • 优势
    • 每修改同步:appendfsync always 同步持久化 每次发生数据变更会被立即记录到磁盘 性能较差但数据完整性比较好
    • 每秒同步:appendfsync everysec 异步操作,每秒记录 如果一秒内宕机,有数据丢失
    • 不同步:appendfsync no 从不同步
  • 劣势
    • 相同数据集的数据而言aof文件要远大于rdb文件,恢复速度慢于rdb
    • Aof运行效率要慢于rdb,每秒同步策略效率较好,不同步效率和rdb相同

AOF小结

  • AOF文件时一个只进行追加的日志文件
  • Redis可以在AOF文件体积变得过大时,自动地在后台对AOF进行重写
  • AOF文件有序地保存了对数据库执行的所有写入操作,这些写入操作以Redis协议的格式保存,因此AOF文件的内容非常容易被人读懂,对文件进行分析也很轻松
  • 对于相同的数据集来说,AOF文件的体积通常要大于RDB文件的体积
  • 根据所使用的fsync 策略,AOF的速度可能会慢于RDB

持久化总结

如果你只希望你的数据在服务器运行的时候存在,可以不使用任何的持久化方式。

一般建议同时开启两种持久化方式。AOF进行数据的持久化,确保数据不会丢失太多,而RDB更适合用于备份数据库,留着一个做万一的手段。

性能建议:

因为RDB文件只用做后备用途,建议只在slave上持久化RDB文件,而且只要在15分钟备份一次就够了,只保留900 1这条规则。

1.如果Enalbe AOF,好处是在最恶劣情况下也只会丢失不超过两秒数据,启动脚本较简单只load自己的AOF文件就可以了。

代价:1、带来了持续的IO;代价2、AOF rewrite的最后将rewrite过程中产生的新数据写到新文件造成的阻塞几乎是不可避免的。

只要硬盘许可,应该尽量减少AOF rewrite的频率,AOF重写的基础大小默认值64M太小了,可以设到5G以上。默认超过原大小100%大小时重写可以改到适当的数值。

2.如果不Enable AOF,仅靠Master-Slave Replication 实现高可用性也可以。能省掉一大笔IO也减少了rewrite时带来的系统波动。代价是如果Master/Slave同时宕掉,会丢失10几分钟的数据,启动脚本也要比较两个Master/Slave中的RDB文件,载入较新的那个。新浪微博就选用了这种架构。

 

posted @ 2020-08-10 11:38  月半Halfmoonly  阅读(246)  评论(0编辑  收藏  举报