[编程题] 赛马

在一条无限长的跑道上,有N匹马在不同的位置上出发开始赛马。当开始赛马比赛后,所有的马开始以自己的速度一直匀速前进。每匹马的速度都不一样,且全部是同样的均匀随机分布。在比赛中当某匹马追上了前面的某匹马时,被追上的马就出局。 请问按以上的规则比赛无限长的时间后,赛道上剩余的马匹数量的数学期望是多少 
输入描述:
每个测试输入包含1个测试用例
输入只有一行,一个正整数N
1 <= N <= 1000


输出描述:
输出一个浮点数,精确到小数点后四位数字,表示剩余马匹数量的数学期望

输入例子1:
1
2

输出例子1:
1.0000
1.5000

 

 

#include<bits/stdc++.h>
#include<iomanip>
using namespace std;
/*
#include <iostream>
#include <iomanip>
using namespace std;
int main( void )
{
const double value = 12.3456789;
cout << value << endl; // 默认以6精度,所以输出为 12.3457
cout << setprecision(4) << value << endl; // 改成4精度,所以输出为12.35
cout << setprecision(8) << value << endl; // 改成8精度,所以输出为12.345679
cout << fixed << setprecision(4) << value << endl; // 加了fixed意味着是固定点方式显示,所以这里的精度指的是小数位,输出为12.3457
cout << value << endl; // fixed和setprecision的作用还在,依然显示12.3457
cout.unsetf( ios::fixed ); // 去掉了fixed,所以精度恢复成整个数值的有效位数,显示为12.35
cout << value << endl;
cout.precision( 6 ); // 恢复成原来的样子,输出为12.3457
cout << value << endl;
}
*/
int main(){
    int N;
    double result = 1.0;
    for(int i = 2;i<=N;i++){
        result += 1/double(i);
    }
    cout<<fixed<<setprecision(4)<<result<<endl;
    
}

 

posted @ 2018-08-02 20:36  mysunicey  阅读(505)  评论(0编辑  收藏  举报