文章分类 - machine learning
AI
摘要:Goals In this lab, you will: extend the previous linear and logistic cost functions with a regularization term. rerun the previous example of over-fit
阅读全文
摘要:regularize linear Regression how to certify which values are needed to be regularize? $$ simpler\ model\ less\ likely\ to\ overfit\ \ J(\vec{w},b)=\fr
阅读全文
摘要:import copy, math import numpy as np %matplotlib widget import matplotlib.pyplot as plt from lab_utils_common import dlc, plot_data, plt_tumor_data, s
阅读全文
摘要:training gradient descent we should know that the loss function also has the only global minimum, so we can use the same method to get the proper $\ve
阅读全文
摘要:Cost function for logistic regression how to choose and b? squared error cost $J(\vec{w},b)=\frac{1}{m} \sum^{m}{i=1}\f
阅读全文
摘要:classification when the y can only be one of two values:"binary classification" class = category false:0 true: 1 one example of binary classification:
阅读全文
摘要:Feature scaling Feature and parameter values when
阅读全文
摘要:import copy, math import numpy as np import matplotlib.pyplot as plt plt.style.use('./deeplearning.mplstyle') np.set_printoptions(precision=2) # reduc
阅读全文
摘要:Multiple linear regression When the situation involve multiple features, we use $$ \begin{align*}\label{2} &x_j = j^{th} feature\ &n = number \ of\ fe
阅读全文
摘要:import numpy as np # it is an unofficial standard to use np for numpy import time # NumPy routines which allocate memory and fill arrays with value a
阅读全文
摘要:gradient descent import math, copy import numpy as np import matplotlib.pyplot as plt plt.style.use('./deeplearning.mplstyle') from lab_utils_uni impo
阅读全文
摘要:Gradiant descent **Have some function J(w,b), want ** Outline: Start with some w,b (set w =0, b =0) Keep ch
阅读全文
摘要:python cost function import numpy as np %matplotlib widget import matplotlib.pyplot as plt from lab_utils_uni import plt_intuition, plt_stationary, pl
阅读全文
摘要:Cost function example cost funtion definition: linear regression function: $$ \widehat{y}^{(i)}=f_{w,b}(x^{i})\ f_{w,b}(x^{(i)}) = wx^{(i)}+b\ Cost \
阅读全文
摘要:import numpy as np #NumPy, a popular library for scientific computing import matplotlib.pyplot as plt #Matplotlib, a popular library for plotting data
阅读全文
摘要:Linear regression model regression model predicts numbers supervised learning model data has "right answers" Classification model predicts catogories
阅读全文
摘要:supervised learning vs unsupervised learning supervised learing input output labelX ————————> YLearns from being given "right answers" this is the exa
阅读全文