【ACM】无聊的小明

无聊的小明

时间限制:3000 ms  |  内存限制:65535 KB
难度:3
 
描述
      这天小明十分无聊,没有事做,但不甘于无聊的小明聪明的想到一个解决无聊的办法,因为他突然对数的正整数次幂产生了兴趣。
  众所周知,2的正整数次幂最后一位数总是不断的在重复2,4,8,6,2,4,8,6……我们说2的正整数次幂最后一位的循环长度是4(实际上4的倍数都可以说是循环长度,但我们只考虑最小的循环长度)。类似的,其余的数字的正整数次幂最后一位数也有类似的循环现象。
  这时小明的问题就出来了:是不是只有最后一位才有这样的循环呢?对于一个整数n的正整数次幂来说,它的后k位是否会发生循环?如果循环的话,循环长度是多少呢?
注意:
  1.如果n的某个正整数次幂的位数不足k,那么不足的高位看做是0。
  2.如果循环长度是L,那么说明对于任意的正整数a,n的a次幂和a + L次幂的最后k位都相同。
 
输入
第一行输入一个整数N(0<n<10);接下来每组测试数据输入只有一行,包含两个整数n(1 <= n <100000)和k(1 <= k <= 5),n和k之间用一个空格隔开,表示要求n的正整数次幂的最后k位的循环长度。
输出
每组测试数据输出包括一行,这一行只包含一个整数,表示循环长度。如果循环不存在,输出-1。

样例输入
1
32 2
样例输出
4

 

 
#include <iostream>
using namespace std;

int main(){

    int m;
    cin>>m;
    int n,k;
    while (m--)
    {
        cin>>n>>k;
        int d = 10;
        for (int i = 1; i < k; i++)
        {
            d*=10;
        }
        long long b = n%d;
        long long temp = b;
        int z;
        int ans = -1;
        for (z = 0 ; z < d ;z++)
        {
            temp = temp*n%d;
            if (b==temp)
            {
                ans = z+1;
                break;
            }
        }
        cout<<ans<<endl;

    }

    return 0;
}        

 

posted @ 2018-09-24 20:12  凌雨尘  阅读(199)  评论(0编辑  收藏  举报