Balanced Binary Tree

Source

Problem Statement
Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example
Given binary tree A={3,9,20,#,#,15,7}, B={3,#,20,15,7}

A)  3            B)    3 
   / \                  \
  9  20                 20
    /  \                / \
   15   7              15  7
The binary tree A is a height-balanced binary tree, but B is not.

题解1 - 递归

根据题意,平衡树的定义是两子树的深度差最大不超过1,显然使用递归进行分析较为方便。既然使用递归,那么接下来就需要分析递归调用的终止条件。和之前的 Maximum Depth of Binary Tree  类似,NULL == root必然是其中一个终止条件,返回0;根据题意还需的另一终止条件应为「左右子树高度差大于1」,但对应此终止条件的返回值是多少?——INT_MAX or INT_MIN?想想都不合适,为何不在传入参数中传入bool指针或者bool引用咧?并以此变量作为最终返回值,此法看似可行,先来看看最开始想到的这种方法。

C++ Recursion with extra bool variable

/**
 * Definition of TreeNode:
 * class TreeNode {
 * public:
 *     int val;
 *     TreeNode *left, *right;
 *     TreeNode(int val) {
 *         this->val = val;
 *         this->left = this->right = NULL;
 *     }
 * }
 */
class Solution {
public:
    /**
     * @param root: The root of binary tree.
     * @return: True if this Binary tree is Balanced, or false.
     */
    bool isBalanced(TreeNode *root) {
        if (NULL == root) {
            return true;
        }

        bool result = true;
        maxDepth(root, result);

        return result;
    }

private:
    int maxDepth(TreeNode *root, bool &isBalanced) {
        if (NULL == root) {
            return 0;
        }

        int leftDepth = maxDepth(root->left, isBalanced);
        int rightDepth = maxDepth(root->right, isBalanced);
        if (abs(leftDepth - rightDepth) > 1) {
            isBalanced = false;
            // speed up the recursion process
            return INT_MAX;
        }

        return max(leftDepth, rightDepth) + 1;
    }
};

源码解析

如果在某一次子树高度差大于1时,返回INT_MAX以减少不必要的计算过程,加速整个递归调用的过程。

初看起来上述代码好像还不错的样子,但是在看了九章的实现后,瞬间觉得自己弱爆了... 首先可以确定abs(leftDepth - rightDepth) > 1肯定是需要特殊处理的,如果返回-1呢?咋一看似乎在下一步返回max(leftDepth, rightDepth) + 1时会出错,再进一步想想,我们能否不让max...这一句执行呢?如果返回了-1,其接盘侠必然是leftDepth或者rightDepth中的一个,因此我们只需要在判断子树高度差大于1的同时也判断下左右子树深度是否为-1即可都返回-1,不得不说这种处理方法要精妙的多,赞!

C++

/**
 * forked from http://www.jiuzhang.com/solutions/balanced-binary-tree/
 * Definition of TreeNode:
 * class TreeNode {
 * public:
 *     int val;
 *     TreeNode *left, *right;
 *     TreeNode(int val) {
 *         this->val = val;
 *         this->left = this->right = NULL;
 *     }
 * }
 */
class Solution {
public:
    /**
     * @param root: The root of binary tree.
     * @return: True if this Binary tree is Balanced, or false.
     */
    bool isBalanced(TreeNode *root) {
        return (-1 != maxDepth(root));
    }

private:
    int maxDepth(TreeNode *root) {
        if (NULL == root) {
            return 0;
        }

        int leftDepth = maxDepth(root->left);
        int rightDepth = maxDepth(root->right);
        if (leftDepth == -1 || rightDepth == -1 || abs(leftDepth - rightDepth) > 1) {
            return -1;
        }

        return max(leftDepth, rightDepth) + 1;
    }
};

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public boolean isBalanced(TreeNode root) {
        return maxDepth(root) != -1;
    }

    private int maxDepth(TreeNode root) {
        if (root == null) return 0;

        int leftDepth = maxDepth(root.left);
        int rightDepth = maxDepth(root.right);
        if (leftDepth == -1 || rightDepth == -1 || Math.abs(leftDepth - rightDepth) > 1) {
            return -1;
        }

        return 1 + Math.max(leftDepth, rightDepth);
    }
}

源码分析

抓住两个核心:子树的高度以及高度之差,返回值应该包含这两种信息。

复杂度分析

遍历所有节点各一次,时间复杂度为 O(n), 使用了部分辅助变量,空间复杂度 O(1).
 
 
 
 
posted @ 2024-02-03 13:05  凌雨尘  阅读(7)  评论(0编辑  收藏  举报